
© Jing (Roy) Yang (ORCID: 0000-0001-9218-6954) 2023. Available under
License Creative Commons Attribution Non-commercial No Derivatives 4.0

Cite as:
Yang, J. (2023). Discovering organizational models from event logs for work-

force analytics [Doctoral dissertation, Queensland University of Technology].
https://doi.org/10.5204/thesis.eprints.244014

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.5204/thesis.eprints.244014


Discovering Organizational
Models from Event Logs
for Workforce Analytics

Jing (Roy) Yang

BEng(SoftwareEng), MEng(CompSc&Tech)

Submitted in fulfilment of the requirement for the degree of
Doctor of Philosophy

School of Information Systems
Faculty of Science

Queensland University of Technology

2023





i

Keywords

Process mining, event log, organizational model, workforce analytics, organiza-

tional model discovery, conformance checking, business process management





iii

In loving memory of my grandmother





v

Abstract

Organizations are built by people and their relationships. Leaders of organizations

need to have a deep insight into their employees in order to streamline business

processes and increase competitiveness. Among others, they need to understand

how human resources act in groups to achieve organizational outcomes. Accurate

and timely information is a sine qua non to achieve this understanding.

This thesis set out to explore process mining for the purpose of deriving or-

ganizational models from event logs that contain resource-related data and use

that knowledge to facilitate the management of resource groups. We introduce

a novel framework, OrdinoR, for discovering, evaluating, and analyzing organiza-

tional models using event logs. This framework is constructed around a new, rich

notion of organizational model, which describes the groupings of human resources

and the groups’ involvement in multidimensional process execution contexts — the

latter is a key element to enable interpreting discovered models and using them

for analyses of human resources and their groups. We propose a systematic ap-

proach to support discovering such models from event logs. We also formulate a

set of measures for evaluating the quality of organizational models and examining

the behavior of resource groups therein. Furthermore, we propose an approach to

using event logs and organizational models to analyze the performance of resource

groups in process execution. This approach considers multiple aspects related to

human resource performance measurement and enables analyses of resource groups

by navigating across different aspects, time periods, and process dimensions. We

conduct experiments on publicly available, real-life event log datasets from orga-

nizations across three business domains. The results and findings demonstrate the

usefulness of our approaches.

This thesis contributes to extending the body of knowledge for process mining

from the organizational perspective. The proposed approaches provide a promising

means to empower organizations to iteratively evaluate decisions on their organi-

zational groupings and evolve them toward process improvement.





vii

Contents

List of Figures ix

List of Tables xiii

Acknowledgements xv

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Research Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Solution Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Research Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Literature Review 11

2.1 Process Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Resource-Oriented Process Mining . . . . . . . . . . . . . . . . . . 14

2.3 Organizational Model Mining . . . . . . . . . . . . . . . . . . . . . 16

2.4 Research Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Conceptual Framework 23

3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Execution Contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Organizational Models . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Discovering Organizational Models . . . . . . . . . . . . . . . . . . 31

3.5 Evaluating Organizational Models . . . . . . . . . . . . . . . . . . 33

3.6 Analyzing Organizational Models . . . . . . . . . . . . . . . . . . . 35

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Learning Execution Contexts 39

4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Problem Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Problem Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



viii

4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Discovering Organizational Models 71

5.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 Applying Organizational Models to Workforce Analytics 87

6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2 Resource Group Work Profiles . . . . . . . . . . . . . . . . . . . . . 89

6.3 Case Study: One Process, Five Municipalities . . . . . . . . . . . . 98

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7 Epilogue 107

A Full Experiment Results 113

Bibliography 117



ix

List of Figures

1.1 An illustration of the three research gaps identified in existing or-

ganizational model mining research: (1) lack of consideration for

multiple process dimensions; (2) missing description of discovered

resource groups in terms of their involvement in process execution;

and (3) absence of evaluation between input event logs (data) and

discovered models (knowledge) . . . . . . . . . . . . . . . . . . . . 4

1.2 An overview of the approaches proposed in this thesis, illustrated

in the context of the Process Mining Project Methodology [85] . . 6

2.1 Process mining bridges data science with process science (this figure

is sourced from Figure 1.7 in [78]) . . . . . . . . . . . . . . . . . . 12

2.2 Process mining can provide evidence-based support to key phases

in the management of business processes (this figure is sourced from

Figure 2.5 in [78], with adaptations) . . . . . . . . . . . . . . . . . 13

3.1 An overview of the OrdinoR framework for organizational model

mining. It supports three types of mining tasks: discovery, evalua-

tion, and analysis of organizational models using event logs . . . . 24

3.2 Illustration of (a) events as data points in three-dimensional space

along the dimensions of case, activity, and time, and (b) execution

contexts as “cubes” characterized by case types, activity types, and

time types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Illustration of an organizational model which captures many-to-

many relationships between resource groups and resources and those

between resource groups and execution contexts . . . . . . . . . . 30

3.4 Visualization of an example organizational model related to the

event log in Table 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 High-quality execution contexts should reflect the specialization of

resources, so it is desirable to use a small number of dedicated exe-

cution contexts (cells) to characterize resource behavior recorded in

events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 An illustration of the proposed approach to learning execution con-

texts from an event log . . . . . . . . . . . . . . . . . . . . . . . . 45



x

4.3 Comparing the two proposed methods in terms of the size (number

of execution contexts) of the 10 solutions generated by applying

each method per dataset . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Comparing the two proposed methods in terms of the quality of the

10 solutions generated by applying each method per dataset . . . 64

4.5 Comparing the solutions obtained by using different numbers of

total iterations when applying SA-based on log wabo (additional

experiment) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.6 Comparing the two proposed methods in terms of the mean score

of solutions obtained per iteration . . . . . . . . . . . . . . . . . . 66

4.7 Comparing the two proposed methods in terms of efficiency, mea-

sured by CPU time in seconds . . . . . . . . . . . . . . . . . . . . 66

5.1 An overview of the approach to the discovery of organizational mod-

els from event logs . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 An annotated screenshot of the software tool implementing the ap-

proach: (1) the visualization of a discovered organizational model;

(2) the model’s quality, measured by fitness, precision, and F1-

score; (3) model analysis measures, along with some other descrip-

tive statistics; (4) a Directly-Follows Graph representing the process

model of the cases of the selected case type (“CT.Desk”), in which

the red activities correspond to the activity types linked with the

selected group (“Group 1”) . . . . . . . . . . . . . . . . . . . . . . 77

5.3 An overview of the experiment setup: each path in the graph spec-

ifies a unique combination of methods for the three tasks. In total,

there are 12 possible combinations of methods for discovering orga-

nizational models from an input event log . . . . . . . . . . . . . . 78

5.4 Size and cohesion (measured by normalized within-cluster distance)

of the clusters in the models discovered by applying AHC and MOC

(Table 5.6). Note that higher within-cluster distance (y-axis) im-

plies lower cohesion . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5 Distribution of group coverage values of all execution contexts with

regard to “Group 1”. Notice that most of the execution contexts

have group coverage lower than 0.2 . . . . . . . . . . . . . . . . . 84

6.1 An overview of the approach to extracting and analyzing resource

group work profiles. Note that an organizational model or domain

knowledge can be used alternatively as input . . . . . . . . . . . . 91



xi

6.2 Annotated screenshots of the prototype’s interactive interface for

analyzing work profiles regarding workload, participation, and dis-

tribution. The numbers mark different views: (1) workload by al-

location; (2) workload by assignment measuring either activities or

cases; (3) workload by relative focus measuring either activities or

cases; (4) distribution by member assignment; (5) participation by

attendance. The views respond to user interactions simultaneously:

(A) selecting a time interval and zoom-in; (B) highlighting specific

groups; (C) focusing on a specific time period (week); and (D) show-

ing specific numbers via a tooltip. Note that these screenshots are

for demonstrating the use of various charts and their integration,

and the text within the screenshots is not of primary relevance . . 96

6.3 Annotated screenshots of the prototype’s interface for analyzing

work profiles regarding performance. Views of (6) amount-related

productivity and (7) time-related productivity respond simultaneously

to user interactions (A–D). Note that these screenshots are for

demonstrating the use of various charts and their integration, and

the text within the screenshots is not of primary relevance . . . . 97

6.4 Workload of the five groups in 2011–2014, measured by relative fo-

cus. The number “0%” corresponds to a rounded percentage value

within the range (0, 0.5%), whereas a cell without annotation cor-

responds to a value of 0. Notice the similarities between the five

groups regarding case types and activity types, and the differences

regarding time types . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.5 Performance of the five groups in 2011–2014. Our analysis was

based on data collected after 2011 . . . . . . . . . . . . . . . . . . 101

6.6 Performance of muni-4 by amount-related productivity (upper chart)

and time-related productivity (lower chart) in the selected interval

2013–2014. Notice the spikes in amount-related productivity — the

vertical lines indicate the week numbers, e.g., “W-14” corresponds

to the 14th week of the year . . . . . . . . . . . . . . . . . . . . . 102

6.7 Distribution within each of the five groups (2011–2014), measured

by member assignment in terms of activity types and case types.

The values have been normalized by member load of each individ-

ual for role analysis. The number “0%” corresponds to a rounded

percentage value within the range (0, 0.5%), whereas a cell with-

out annotation corresponds to a value of 0. Notice that resources

annotated with red lines are those exhibiting patterns unique to

municipalities, as discussed in the within-group analysis . . . . . . 103



xii

6.7 (Cont.) Distribution within each of the five groups (2011–2014),

measured by member assignment in terms of activity types and case

types. The values have been normalized by member load of each indi-

vidual for role analysis. The number “0%” corresponds to a rounded

percentage value within the range (0, 0.5%), whereas a cell with-

out annotation corresponds to a value of 0. Notice that resources

annotated with red lines are those exhibiting patterns unique to

municipalities, as discussed in the within-group analysis . . . . . . 104



xiii

List of Tables

2.1 Evaluating state-of-the-art approaches to discovering organizational

models from event logs, based on the solution criteria introduced in

Section 1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 A fragment of an example event log . . . . . . . . . . . . . . . . . 26

3.2 A fragment of an example derived resource-event log . . . . . . . . 32

4.1 A summary of the characteristics of the selected event log datasets 57

4.2 A summary of the selected event log datasets after preprocessing . 61

4.3 Comparing the worst solutions produced by the proposed learning

execution contexts methods and the baselines . . . . . . . . . . . . 63

5.1 An example resource-by-execution-context matrix related to the ex-

ample resource-event log in Table 3.2 . . . . . . . . . . . . . . . . 74

5.2 Applying context selection to analyze only the “VIP” cases (left)

and normalization by row sums to exclude workload difference (right)

to the example resource-by-execution-context matrix in Table 5.1 74

5.3 An example of profiling a resource group of three resources, apply-

ing FullRecall and OverallScore (setting weights ω1 = ω2 = 0.5 and

threshold θ = 0.8) . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 Discovered models with the best quality, used as baselines in the

comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.5 Comparing models discovered by applying ATonly, tree-based, and

SA-based to determine execution contexts, respectively . . . . . . 80

5.6 Comparing models discovered by applying AHC and MOC to dis-

cover resource grouping . . . . . . . . . . . . . . . . . . . . . . . . 80

5.7 Comparing models discovered by applying FullRecall and OverallScore

to profile resource groups . . . . . . . . . . . . . . . . . . . . . . . 82

5.8 Average group relative stake and group coverage of the resource

groups in the outlier model (discovered from sepsis using tree-based-

MOC-FullRecall). The two groups in bold text (“Group 1” and

“Group 3”) were pinpointed by the model diagnosis for detailed

analysis. Note that the resource group names were randomly as-

signed by the applied clustering technique . . . . . . . . . . . . . . 83



xiv

5.9 Capabilities of “Group 3” in the outlier model, measured by group

relative stake, group coverage, and group member contribution per

each resource in the group . . . . . . . . . . . . . . . . . . . . . . 84

A.1 Full results of the evaluation (Section 4.4) of all 100 solutions of

learning execution contexts from the experiment datasets, applying

the tree-based and SA-based method, respectively . . . . . . . . . 113

A.2 Full results of the evaluation (Section 5.3.2) of all 60 organizational

models discovered from the experiment datasets by applying the

combination of ATonly/tree-based/SA-based, AHC/MOC, and Full-

Recall/OverallScore . . . . . . . . . . . . . . . . . . . . . . . . . . . 115



xv

Acknowledgements

During the past few years, I had talks with people where the many challenges in

completing a PhD project were often mentioned. Sometimes those talks were to

“share the burden,” and at other times they were about cheering me up. Now,

when I look back on the journey, I feel that my memories of those uneasy times

seem to have faded away. Part of the reason is that I tend to remember more

about the joys of life. In the meantime, I believe it is also because of the luxury I

have had on this journey, which supported me to overcome all the uncertainties.

I owe a lot of gratitude to Chun Ouyang. As my principal supervisor, Chun’s

continued support for me started before I embarked on my trip. She kindly of-

fered key advice during my work on my master’s degree (despite having no need

or responsibility to do so), which led to a successful collaboration and later my op-

portunity to study for a PhD. Completing a PhD project certainly involves many

challenges, and it is hard to imagine the challenges when it comes to guiding some-

one through a PhD. Thank you, Chun, for all your help, efforts, and patience (and

the mangoes and chocolate as well)!

I am deeply grateful for the support from Arthur ter Hofstede. Arthur has

been an “all-around” advisor. From Arthur, I sought advice on various aspects —

how to write good formalization, how to better express myself, how to collaborate

with people effectively, etc. — and Arthur always offered thoughtful feedback that

I could take to develop my capabilities as a researcher and beyond. Thank you,

Arthur.

Particular gratitude also goes to Wil van der Aalst. I still remember the day

when I askedWil stiffly whether he could be on my supervisory team. BothWil and

I were visiting QUT, only that Wil was an established scholar who pilots research

in the field, while I was working on my master’s degree and had not secured any

PhD scholarship; and Wil hardly knew anything about me! Thank you, Wil, for

accepting that invitation, and for all the insightful advice and feedback that you

have provided to me.

I also thank Yang Yu. His support and guidance during my bachelor’s and

master’s studies were key to the start of my journey of research. And I always find

encouragement when talking with him.



xvi

I would also like to thank many people who have helped me in many ways.

Michael provided key input into some of the co-authored work related to my thesis.

Guy, Karen, Yue, Catarina, Renuka, Erwin, Barbara, Pnina, Wasana, Robert,

Alistair, Sander, Moe, Colin, and David offered comments and asked questions

that enabled me to reflect on my research from different perspectives. I worked

with Paul, Guvenc, Miranda, Amy, Hamish, Belinda, and Nigel on other projects

during the course of my PhD. From them, I have learned a lot. Special thanks

go to my fellow students: Adam Banham, Adam Burke, Anu, Atae, Azumah,

Behnam, Bemali, Chester, Christoph, Felipe, Ina, Jenny, Joe, Kenny, Lakmali,

Lauren, Leon, Malmi, Miguel, Mostafa, Mythreyi, Pamela, Richard, Sareh, Tendai,

Yancong, Zippo — for sharing the joys and burdens of doing a PhD. I also thank

people who offered assistance to me and whom I shared conversations with.

Last and most importantly, many thanks to my family. I would never be able to

come this far without their unwavering support, especially when being thousands

of kilometers away from home and at a time of uncertainty. I am most indebted

to my wife, Wenhui, for all her love and encouragement, which have always been

the pillar of my adventures, past and forward.

This research was supported by an Australian Government Research Training

Program Scholarship.



1

Chapter 1

Introduction

A wise leader knows how to fit the right personnel with the right

tasks, like a skillful carpenter knows how to utilize timber of any

shapes or lengths.1

– Emperor Taizong of the Tang dynasty

Good leaders know their employees. They strive for effective strategies to fit people

together in organizations and fit people’s talents with the right jobs. Taizong (598–

649 CE), the second emperor and co-founder of the Tang empire, held a firm belief

throughout his 23-year-long reign: building an effective workforce was imperative

for his governance; and he, as the leader, should keep a good understanding of his

clerks and base his appointment decisions on that. Taizong promoted and further

developed the imperial examination system so that people were recruited into civil

service for their talents rather than lineage or wealth. He also understood that to

ensure that his empire thrived, it would take not only the building of a talented

workforce but also to review their performance constantly and adjust duties and

appointments accordingly. For this purpose, Taizong was open to accepting differ-

ent voices, with some being harsh critics of his decisions — in the hope that, by

doing so, he would get the most accurate information on his staff, especially the

ones holding posts remote to the capital. He asked to have the ping feng (free-

standing privacy screens) in his chamber written with the names of officials along

with their achievements and failures2, so he would be able to analyze and reflect

on his decisions on a daily basis. Emperor Taizong’s appreciation for talents and

the objectivity of information was crucial to successfully leading the state and peo-

ple from the turbulent early years — faced with the aftermath of war and coups,

widespread famine, and risks of domestic rebellions and foreign incursions — to

1 This quote is translated by the author based on the contents of Chapter 4 “Investigating Officials”
in Di Fan (meaning, Models for an Emperor), a political treatise written by Emperor Taizong as a
handbook on governance for his sons.

2 This is recorded in Chapter 197 (Biography 122) in the New Book of Tang, a work of history covering
the Tang dynasty, compiled by a team of scholars in 1044–1060 CE.



2

what was later recognized as the golden, prosperous era of Zhenguan. It is also

regarded as the pillar of his art of governance, which continued beyond his reign

and started a legacy honored by his successors and considered to be a universal

model of good governance by historians [25].

In many ways, managing a modern organization does not resemble ruling an

imperial state. However, leaders today would agree with the Tang emperor on

the value of accurate workforce insights for effective decision-making. In an era of

technological innovation and globalization, modern organizations have no shortage

of different forms of data capturing various aspects of business operations. Instead

of being underfed, leaders of modern organizations are rather overwhelmed by

data. So they would certainly welcome a ping feng of their own — not necessarily

a screen in bedrooms, but a tool that will enable them to navigate through the

overwhelming amount of information and grasp the essential knowledge of their

organizations and employees.

1.1 Background

Many leading enterprises have started seeking opportunities to leverage advanced

analytics on employee-related data to provide evidence-based insights into their

workforce [54]. Among others, Google’s project “Oxygen” is an example of suc-

cessfully deploying workforce analytics, which helped improve the company’s pro-

ductivity and employee well-being and build up effective human resource man-

agement practices [30]. Yet, there are practical challenges that prevent workforce

analytics from realizing its promise. One notable challenge is concerned with the

absence of group-oriented analysis pivotal to strategy execution and organizational

effectiveness [45]. For example, current workforce analytics has not yet enabled

consistent comparisons across internal groups within organizations [34].

In modern organizations, employees, along with other resources, are deployed

in business processes [27] to deliver products and services. To maintain competi-

tiveness in an ever-changing environment, organizations have to be able to rapidly

adapt their business processes and optimally marshal their resources. Often, busi-

ness processes are “end-to-end”, i.e., they cut across organizational boundaries

and collectively involve human resources from different functional units, linking

the performance of employees and their organizational groups with process out-

comes. Therefore, organizations need to possess the capability to constantly evolve

organizational groups alongside changing business processes [22], and it is thus

imperative that they maintain accurate and timely insights into the groups [23].

Clearly, relying on organizational charts — too static and often too high-level —

or on leaders’ intuition — too vague and often anecdotal — will not be conducive

to achieving this capability.



3

Process execution data provides a promising source for extracting accurate

and timely insights into human resources in the context of business processes [58].

This data is readily available in many contemporary “process-aware” information

systems [78] and is often stored in so-called event logs. Event logs record activities

undertaken at a specific time in the context of the execution of a certain instance of

a process (often known as a case) [78, 27]. In addition, they may record resources

who executed those activities. As such, event logs capture the trails of human

resource participation in various contexts of actual business process execution.

Therefore, they provide a reliable starting point for discovering timely process-

and resource-related information [68, 63] to support workforce analytics alongside

contemporary data sources used in practice, for example, survey data.

1.2 Research Problem

Our research investigates the problem: How can we derive knowledge about orga-

nizational groupings from event log data to facilitate the management of human

resources in business processes?

Process mining [76, 78, 24] offers a growing body of methods to extract knowl-

edge from event logs for process management and improvement, including insights

from the human resource perspective. A relatively underexplored subfield, organi-

zational model mining [68, 7, 91], is concerned with the study of groups of human

resources, specifically how models can be derived from event logs to reflect resource

groupings in process execution. But, existing methods for organizational model

mining are not fully up to the task of supporting analyses of resource groupings.

Figure 1.1 illustrates the reasons. There are three gaps in the existing research.

First, event log data recording process execution typically encompasses multiple

dimensions including case, activity, and time. Existing mining methods mainly

focus on exploiting the activity dimension, but rarely consider the case and time

dimensions. This narrow focus is limiting when resource groupings need to be

considered across different cases (e.g., specialist groups dedicated to particular

customers) or across different time periods (e.g., employees playing the same role

but working different shifts). Second, organizational models discovered by existing

methods often do not transcend the mere clustering of resources — they do not

describe how the discovered resource groups were involved in process execution.

Therefore, they are not very helpful in analyzing and understanding the behavior

of resource groups. Last but not least, existing methods rely on either domain

knowledge or technique-specific, intrinsic measures to evaluate discovered models.

A generic evaluation approach is still missing.

In light of these identified gaps, we study the research problem by breaking it

into the following research questions (RQs).



4

event log
(input data)

organizational model
(output knowledge)

time

activities

cases

event

resourcesresource groups

1

2

3

Figure 1.1: An illustration of the three research gaps identified in existing orga-
nizational model mining research: (1) lack of consideration for multiple process
dimensions; (2) missing description of discovered resource groups in terms of their
involvement in process execution; and (3) absence of evaluation between input
event logs (data) and discovered models (knowledge)

RQ1. How to discover organizational models from event log data? More precisely,

we will need to understand:

RQ1.1. What methods can be applied to discover organizational models from

event log data?

RQ1.2. How to evaluate discovered organizational models?

RQ1.3. How to effectively represent organizational models discovered from event

log data to facilitate analysis of resource group performance?

Knowing how organizational models may be extracted from event log data and

how they represent knowledge about resource groups, the next step is to investi-

gate how these models may be applied to support workforce analytics.

RQ2. How can organizational models be exploited to analyze resource group per-

formance in process execution? This question can be approached by investigating:

RQ2.1. What aspects of resource group performance can be measured using or-

ganizational models?

RQ2.2. How to use resource group performance results to facilitate the manage-

ment of resource groups?



5

1.3 Solution Criteria

We consider that a solution to the proposed research questions should satisfy the

following criteria.

C1. A solution should be underpinned by formal definitions that provide an un-

ambiguous description of the solution.

C2. A solution should be described at a conceptual level and be independent of

specific technology- or implementation-related considerations.

C3. A solution should maximize the use of relevant input event log information

necessary for discovering organizational-grouping-related knowledge.

C4. A solution should generate outputs that can be interpreted.

C5. A solution should allow for assessing its outputs against existing, objective

information, that is, not subject to the solution itself.

C6. A solution should allow for assessing its outputs using input event logs with-

out requiring additional information.

C7. A solution should allow for its implementation to be executable in order to

demonstrate its effectiveness in discovering resource-grouping-related knowl-

edge from event logs.

C8. A solution should require a minimum set of data attributes present in input

event logs, i.e., case identifiers, activity labels, timestamps, and resource

identifiers, and not be limited to event logs that record processes from certain

domains.

1.4 Research Design

We address the research questions proposed in Section 1.2 by applying the Design

Science Research (DSR) framework [57] and following the guidelines proposed by

Hevner et al. [37].

Existing research [68, 97, 63] has shown the need to support the understanding

of human resource behavior in business processes and the value of mining organiza-

tional models from process execution data for that purpose (Guideline 2: Problem

Relevance). Therefore, we start the DSR process by reviewing the literature and

evaluating state-of-the-art organizational model mining approaches. We identify

research gaps that may impede their use in practice, especially in terms of the

application to workforce analytics. These gaps are discussed in Chapter 2. The

identified issues guide us to define the solution criteria, which we will use as re-

quirements for devising our approaches. These criteria have been presented in

Section 1.3.



6

Research in this thesis

Data processing Evaluation

event logs

improvement 
ideas

organizational 
models

event data

Model 
discovery

Model 
evaluation

Model 
analysis

Applying 
visual analytics

workforce 
analytics 
findings

√employee segmentation
√performance review
√compliance issues

organizational 
model quality

resource group 
work profiles

refined/new 
analysis questions

refined/new 
analysis questions

Figure 1.2: An overview of the approaches proposed in this thesis, illustrated in
the context of the Process Mining Project Methodology [85]

Figure 1.2 illustrates a summary of the new approaches developed in this thesis.

We rigorously define and formalize notions related to event logs and organizational

models. For event logs, we assume the existence of some standard data attributes,

i.e., case identifier, activity name, timestamp, and resource identifier, which are

common for input to organizational model mining. For organizational models, we

introduce a new definition that considers multiple process dimensions and, com-

pared to the literature, can more effectively represent the grouping of resources and

their involvement in process execution. Then, we use these notions as the founda-

tion for designing and developing our conceptual framework (Guideline 5: Research

Rigor), namely OrdinoR3. The framework formulates three types of organizational

model mining, i.e., model discovery, model evaluation, and model analysis. They

all use event logs as input but are performed for different purposes: (i) model

discovery aims to construct organizational models to characterize the grouping of

resources and their involvement in the actual process execution, reflected by event

logs; (ii) model evaluation aims to assess organizational model quality in an objec-

tive way, independent from additional information other than the input event logs

used to discover the models; (iii) model analysis aims to examine the performance

3 Ordino means “to arrange” in Latin; the trailing letter R stands for “resources”.



7

of resource groups captured in organizational models and provide information to

support workforce analytics. In the framework, we propose that three concrete

tasks need to be addressed to discover organizational models. We introduce two

measures, fitness and precision, for evaluating organizational models against event

logs. We also present a set of quantitative measures for analyzing the behavior

of resource groups — their workload distribution and the contribution by group

members — based on event logs. Chapter 3 presents the OrdinoR framework and

these underpinning notions and measures.

Next, we develop an approach to discovering organizational models from event

logs. This approach addresses the concrete discovery tasks outlined in the con-

ceptual framework. Specifically, Chapter 4 introduces the problem of learning

execution contexts from event logs. Solving this problem is essential to model

discovery as well as its evaluation and analysis. We formulate the problem as

a task of deriving logical rules that best characterize the specialization of re-

sources recorded in event logs. We then propose two solutions to the problem:

(i) a customized decision-tree-based method, which produces locally optimal rules

efficiently, and (ii) a simulated-annealing-based method that searches for near-

global-optimal rules. Chapter 5 presents the full approach to organizational model

discovery, where each of the outlined discovery tasks can be addressed using several

alternative methods. These methods can be selected and configured according to

the application of the approach, i.e., the process and organization being analyzed,

the analytical questions, and available domain knowledge. These methods together

constitute a systematic way to automatically construct organizational models that

describe resource groupings reflected by event log data.

Last but not least, we propose the notion of resource group work profile in

Chapter 6. This notion is developed based on reviewing the management liter-

ature on human resource performance measurement. It encompasses an array of

quantified indicators, which can be extracted from event logs and organizational

models and be applied to measure various aspects relevant to how resource groups

and their members work in process execution. Furthermore, we also introduce

an approach to applying visual analytics to work profiles extracted from data, so

as to track, compare, and correlate resource groups’ performance — across group

and individual levels, over different time periods, and related to various process

dimensions.

Together, the conceptual framework and the array of data-driven approaches

form a purposeful and viable artifact for organizational model mining in the process

mining field (Guideline 1: Design as an artifact).

To demonstrate the usefulness and evaluate the effectiveness of our approaches,

we implement them as open-source software tools and conduct experiments on

publicly available, real-life event log datasets collected from three different business



8

domains (Guideline 5: Research Rigor; Guideline 3: Design Evaluation). We

exploit the evaluation results to iterate the design of our approaches (Guideline 6:

Design as a Search Process). The experiments and the results are reported in the

evaluation and case study sections of Chapters 4, 5, and 6, respectively.

Finally, we document the steps taken to develop the approaches and share the

software implementation as open-source tools (Guideline 4: Research Contribu-

tions). We reported our research and its contributions through academic publica-

tions and research seminars (Guideline 7: Communication of Research), which are

consolidated and presented in this thesis.

1.5 Contributions

Our research makes several original contributions to the body of knowledge as

follows.

1. We define a new, rich notion of organizational models as the foundation of a

novel framework for organizational model mining from event logs. The new

organizational models consider multiple dimensions of process execution and

link the relevant execution information with resource groupings. As such,

they can be used to capture comprehensive knowledge about resource groups

and their involvement in processes (addressing RQ1.3).

2. We propose an approach to discovering organizational models from event

logs. It is capable of automatically constructing high-quality organizational

models from event logs with a minimum set of standard attributes. We

present a set of alternative methods for each step of the approach and discuss

their configuration (addressing RQ1.1).

3. We propose two model evaluation measures: fitness and precision. These

measures form a generic basis for assessing the quality of discovered organi-

zational models (addressing RQ1.2).

4. We propose a set of model analysis measures and extend them to formulate

the notion of resource group work profiles. Work profiles can be extracted

from event logs and be used to systematically analyze how resource groups

and their members work in process execution, from various aspects and across

different periods (addressing RQ2.1 and RQ2.2).

5. The last, but not least contribution of this thesis is made to the research on

workforce analytics in the field of human resource management. We intro-

duce business process execution data stored in event logs as a potential data

source for analyses, and our approaches contribute a means for workforce

analytics to adopt the use of this data source.



9

As a set of process mining techniques, our approaches can be applied by data

analysts following the Process Mining Project Methodology (PM2) [85]. Refer to

Figure 1.2 again.

Here, we assume that the planning and extraction stages have been completed

(cf. Section 2 in [85]), so that the event data and process domain knowledge are

given with regard to the set of analysis questions and the scope.

In the data processing stage, the application of our approaches requires pro-

ducing event logs that have at least the minimum set of standard data attributes

(which are discussed in detail in Chapter 3). With a created event log, data ana-

lysts start by applying the model discovery approach (Chapter 4 and Chapter 5).

Then, the quality of the discovered models is determined by applying the model

evaluation measures (Chapter 3). The analysts can use the measured quality to

decide whether to keep the output models or restart model discovery. In the latter

case, they can utilize the model analysis measures (Chapter 3) to “diagnose” the

issues of the low-quality models and use the analysis results to adjust the selection

and configuration of methods in the next run of the model discovery approach.

Once a satisfactory model is obtained, the analysts can apply it along with the

event log to extract and analyze resource group work profiles (Chapter 6) using

visual analytics.

As outputs, several types of workforce analytics findings can be obtained:

(i) the grouping of resources captured by the discovered organizational model may

inform decisions about employee segmentation [73]; (ii) the resource group work

profiles and their analyses provide an intuitive means to navigate across different

aspects, time periods, and multiple process dimensions to objectively review the

performance of resource groups and their members in process execution; (iii) the

overall examination of the model and the work profiles may reveal potential compli-

ance issues, e.g., an unexpected split of responsibility in handling process activities

for specific types of cases, or a failure to ensure agreed workload limits for specific

groups of employees.

Lastly, in the evaluation stage, analysts need to validate and interpret the

findings and determine if they are useful for supporting improvement ideas; or if

it is necessary to perform another iteration of analysis, using questions refined or

created during the evaluation.

1.6 Publications

The work in the following list was produced in the course of this research.

1. J. Yang, C. Ouyang, W.M.P. van der Aalst, A.H.M. ter Hofstede, and Y. Yu.

OrdinoR: A Framework for Discovering, Evaluating, and Analyzing Organi-

zational Models using Event Logs. Decision Support Systems, 158:113771.



10

2022. This publication forms the basis of Chapters 3 and 5.

2. J. Yang. Discovering Organizational Knowledge via Process Mining. In

Proceedings of the Doctoral Consortium Papers Presented at the 33rd Inter-

national Conference on Advanced Information Systems Engineering (CAiSE

2021), Melbourne, Australia, June 28–July 2, 2021, volume 2906 of CEUR

Workshop Proceedings, page 41–48. CEUR-WS.org, 2021. This publication

contributes to Chapter 3.

3. J. Yang, C. Ouyang, A.H.M. ter Hofstede, and W.M.P. van der Aalst. No

Time to Dice: Learning Execution Contexts from Event Logs for Resource-

Oriented Process Mining. In Proceedings of the 20th International Confer-

ence on Business Process Management (BPM 2022), Münster, Germany,

September 11–16, 2022, pages 163–180. Springer International Publishing,

2022. This publication forms the basis of Chapter 4.

4. J. Yang, C. Ouyang, A.H.M. ter Hofstede, W.M.P. van der Aalst, and

M. Leyer. Seeing the Forest for the Trees: Group-oriented Workforce Analyt-

ics. In Proceedings of the 19th International Conference on Business Process

Management (BPM 2021), Rome, Italy, September 6–10, 2021, pages 345–

362, Springer International Publishing, 2021. This publication forms the

basis of Chapter 6.

The following work precedes and motivates this research:

• J. Yang, C. Ouyang, M. Pan, Y. Yu, and A.H.M. ter Hofstede. Finding the

“Liberos”: Discover Organizational Models with Overlaps. In Proceedings of

the 16th International Conference on Business Process Management (BPM

2018), Sydney, Australia, September 9–14, 2018, pages 339–355, Springer

International Publishing, 2018.



11

Chapter 2

Literature Review

In this chapter, we review the academic literature related to the study of our

research problem. We will start with the background, introducing the research

field of process mining. Then, we will focus on a set of existing process mining

approaches dedicated to discovering knowledge about human resources, and will

specifically look into the subfield of organizational model mining. We will conclude

with an analysis of research gaps.

2.1 Process Mining

Process mining extracts knowledge about processes from data recording process

execution. The extracted knowledge provides insights into process management

and improvement [76, 78, 24]. Process execution data is “readily available” [78]

in many contemporary enterprise information systems such as Workflow Manage-

ment (WfM) systems, Enterprise Resource Planning (ERP) systems, and Customer

Relationship Management (CRM) systems. These information systems are often

“process-aware” [28] — they support the deployment of business processes in orga-

nizations captured in an explicit notion, and they are involved in the management

of that process (not necessarily controlling the process like a workflow engine dis-

patching work to employees). As such, data extracted from these systems can be

used to provide information on how processes execute in reality. On the contrary,

modeled processes, which are often used at the initial design phase of a business

process, do not reflect up-to-date changes once the process has been deployed.

Process execution data is usually collected and stored in the form of so-called

event logs — sequentially recorded events that are recorded when an activity (a

step in a process) is performed in a case (a process instance) at some time. In ad-

dition, since process execution data can be captured by process-aware information

systems that cover different parts of an end-to-end process, it is possible for an

event log to store multidimensional information related to, e.g., the characteristics



12

of cases, employees who performed in a process, and the cost required to execute

the process activities using humans and other resources.

Process mining is a growing discipline that researches the principles and meth-

ods to extract insights from event logs for discovering, monitoring, and improving

processes in organizations. As illustrated in Figure 2.1, process mining bridges

data science with process science, creating synergies between emerging data-centric

analysis techniques and tools and traditional model-focused analysis [78]. It em-

phasizes gaining insights into the current-state process, for example, performance

bottlenecks and unexpected variation, and creates a transparent view of complex

organizational activities through exploiting warehoused data. Therefore, process

mining is considered a promising solution to some of the most fundamental chal-

lenges in business process management [24].18 1 Data Science in Action

Fig. 1.7 Process mining as the bridge between data science and process science

using a booking site, analyzing failures of a baggage handling system, and improv-
ing the user interface of an X-ray machine. What all of these applications have in
common is that dynamic behavior needs to be related to process models. Hence, we
refer to this as “data science in action”.

Spreadsheets: Dealing with numbers rather than dynamic behavior
Spreadsheet software can be found on most computers, and over the last 25
years many computers have been purchased just to be able to create and
use spreadsheets. A spreadsheet is composed of cells organized in rows and
columns. Some cells serve as input, other cells have values computed over
a collection of other cells (e.g., taking the sum over an array of cells). The
expression associated to a cell may use a range of arithmetic operations (add,
subtract, multiply, etc.) and predefined functions. For example, Microsoft’s
Excel provides hundreds of functions including statistical functions, math and
trigonometry functions, financial functions, and logical functions. Most orga-
nizations use spreadsheets in financial planning, budgeting, work distribution,
etc. Hence, it is interesting to view process mining against the backdrop of this
widely used technology.

Figure 2.1: Process mining bridges data science with process science (this figure
is sourced from Figure 1.7 in [78])

The value of process mining can be further explained by considering its con-

tributions to the lifecycle of process management [27]. Figure 2.2 illustrates the

idea: Organizations use process models to specify how their business processes

operate, incorporating employees and other core assets. Process models are then

used to configure process-aware information systems, which are deployed to help

organizations implement and control their business processes. These process-aware



13

information systems record the “trail” data of actual process execution, which can

be extracted into the form of event logs. Process mining provides a means to utilize

event logs for deriving knowledge about the process, which can be used together

with the initial process model to support the improvement of processes. A recent

study [2] predicts that the market for process mining will grow tenfold over the

next few years.7:2 W. van der Aalst

Fig. 1. The three basic types of process mining: (a) discovery, (b) conformance, and (c) enhancement.

(i.e., a process instance). The events belonging to a case are ordered and can be seen
as one “run” of the process. Event logs may store additional information about events.
In fact, whenever possible, process mining techniques use extra information such as
the resource (i.e., person or device) executing or initiating the activity, the timestamp
of the event, or data elements recorded with the event (e.g., the size of an order).

Event logs can be used to conduct three types of process mining, as shown in
Figure 1 [van der Aalst 2011]. The first type of process mining is discovery. A discov-
ery technique takes an event log and produces a model without using any a priori
information. Process discovery is the most prominent process mining technique. For
many organizations it is surprising to see that existing techniques are indeed able
to discover real processes merely based on example behaviors stored in event logs.
The second type of process mining is conformance. Here, an existing process model is
compared with an event log of the same process. Conformance checking can be used
to check if reality, as recorded in the log, conforms to the model and vice versa. The
third type of process mining is enhancement. Here, the idea is to extend or improve an
existing process model thereby using information about the actual process recorded
in some event log. Whereas conformance checking measures the alignment between
model and reality, this third type of process mining aims at changing or extending the
a priori model. For instance, by using timestamps in the event log one can extend the
model to show bottlenecks, service levels, and throughput times.

Unlike traditional Business Process Management (BPM) techniques that use hand-
made models [Weske 2007], process mining is based on facts. Based on observed be-
havior recorded in event logs, intelligent techniques are used to extract knowledge.
Therefore, we claim that process mining enables evidence-based BPM. Unlike existing
analysis approaches, process mining is process-centric (and not data-centric), truly in-
telligent (learning from historic data), and fact-based (based on event data rather than
opinions).

Process mining is related to data mining. Whereas classical data mining techniques
are mostly data-centric [Hand et al. 2001], process mining is process-centric. Main-
stream business process modeling techniques use notations such as the Business
Process Modeling Notation (BPMN), UML activity diagrams, Event-driven Process
Chains (EPC), and various types of Petri nets [Desel and Reisig 1998; van der Aalst
and Stahl 2011; Weske 2007]. These notations can be used model process processes
with concurrency, choice, iteration, etc.

ACM Transactions on Management Information Systems, Vol. 3, No. 2, Article 7, Publication date: July 2012.

Process Mining

Figure 2.2: Process mining can provide evidence-based support to key phases in
the management of business processes (this figure is sourced from Figure 2.5 in [78],
with adaptations)

Process mining can unearth insights into processes, but is not limited to the

discovery of process models that describe process activities and their ordering (i.e.,

the “control-flow” of a process). Many types of process mining exist, including:

(i) discovery, which aims to construct a model from a given event log to represent

the process in reality as recorded in the data; (ii) conformance, which aims to com-

pare a process model that describes a process against the observations in an event

log, e.g., investigating if there are compliance issues in the execution of a process;

and (iii) enhancement, which aims to extend or improve a process model by using

event log information, e.g., annotating a model with case and time information to

show the performance bottlenecks in a process.

Process mining is also concerned with various perspectives of a process beyond

its “control-flow”, including: (i) the case perspective, which focuses on the prop-

erties of cases, e.g., analyzing how the characteristics of cases may be related to

the control-flow paths or other data elements; (ii) the organizational/resource per-

spective, which looks into how (human) resources are involved and related in the

context of process execution, e.g., the handover of work items between resources

in process execution; (iii) the time perspective, which investigates the temporal

aspect of a process, e.g., predicting the remaining processing time of running cases.



14

Our research is concerned with the organizational/resource perspective with a

focus on model discovery. In the following sections, we expand on that area of

process mining, which we refer to as resource-oriented process mining.

2.2 Resource-Oriented Process Mining

Event logs can record various types of information related to the execution of a

process. Apart from the minimally required data (cases, activities, timestamps),

many event logs record resource identifiers, i.e., the identity of (human) resources

who triggered the events. Some event logs may record additional resource informa-

tion such as roles or organizational groups. In the IEEE XES standard [4] for event

logs, they are captured by event attributes of the organizational extension [3].

Process mining research that aims at extracting resource-related knowledge is

relatively underexplored [63, 91]. Often, it is assumed that only resource identi-

fiers are present in a log (i.e., the role and organizational group of resources are

unknown). Below, we briefly introduce several resource-oriented process mining

topics.

Van der Aalst and Song [80] first suggest that two types of resource-related

knowledge can be discovered using event logs, i.e., organizational structures reveal-

ing the possible business roles of individuals and resource social networks describing

inter-resource relationships in process execution. Their subsequent work [79] fo-

cuses on social network mining and identifies four types of resource relationships

that are discoverable: the handover of work between resources, similarities in per-

forming activities (“joint activities”), simultaneous appearance in cases (“joint

cases”), and relationships determined by special types of events (e.g., delegations

of work). Discovered networks consist of nodes representing individual resources

and links representing the strength of some relationship. Then, existing social net-

work analysis techniques can be applied to the discovered networks for identifying

frequent interactions, modeling information flows, etc. A case study reported in

their work shows the usefulness of mining social networks and suggests the po-

tential values of mining other resource-related insights from event logs. Further

studies on the topic of social network mining explore the applications of various

network analysis techniques and the insights they provide. For example, Ferreira

and Alves [29] propose to apply community detection on resource social networks

to facilitate the analysis and visualization at different levels of abstraction; Liu

et al. [47] propose to discover features like social positions from resource social

networks and use them to augment resource models for supporting team collabo-

ration in task assignment; Kumar and Liu [44] utilize the handover (“hand-off”)

patterns discovered from event logs to gain insights into frequent interaction pat-

terns of resources and their impact on process performance.



15

Ly et al. [51] propose the problem of assignment rule mining, which aims at

extracting inherent rules that decide the assignment of tasks (process activities) to

resources. The input to assignment rule mining consists of an event log and a given

organizational model. A decision tree learning technique is employed and adapted

for rule extraction. Discovered staff assignment rules can help process owners and

system engineers diagnose and refine the assignment settings of workflow systems.

Subsequent research on assignment rule mining [59, 49, 38, 48, 63] varies in terms

of the required event information and the techniques applied.

Resource behavioral profile mining aims at characterizing different aspects of

individual resource behavior in process execution. Pika et al. [58] define several

aspects of resource behavior that can be measured and analyzed given event logs,

e.g., resource skills, utilization, and preference. Mining resource behavioral profiles

can provide objective information to analysts regarding resource performance in

the context of process execution. Other research on the topic considers different

types of resource behavior, e.g., Nakatumba and van der Aalst [55] propose to

discover from event logs the relationship between resource workload and resource

efficiency at work; Huang et al. [39] introduce the characterization of resource avail-

ability and competence using event logs; Suriadi et al. [71] focus on discovering

the work prioritization patterns of resources, their conformance to prescribed dis-

cipline of queuing, and how such prioritization patterns impact the overall process

performance.

Organizational model mining aims to discover the organizational structures de-

ployed around resources. As event logs may capture only fractions of employees’

activities in organizations [68], mining organizational models is often formulated as

identifying groups of resources exhibiting similar characteristics in process execu-

tion. The majority of the state-of-the-art research addresses the problem by first

characterizing how individual resources participate in process execution or how

they interact with each other. Then, the problem is transformed into a clustering

(e.g., [40, 91]) or a community-detection problem (e.g., [7, 95]), and dedicated tech-

niques are applied to solve them. As a result, a discovered organizational model

comprises groups of resources with shared features, e.g., frequently performing a

unique subset of process activities. These models may offer insights into resource

planning and the design of business roles.

Despite the different forms of discovered knowledge, the above research topics

may be related. For example, the discovery of resource groups in organizational

model mining can be achieved by applying graph partitioning or community detec-

tion techniques on resource social networks extracted from event logs [68, 29, 7].

It is also worthwhile mentioning that there exist different views toward the

resource-oriented process mining literature. Schönig et al. [63] discuss existing

mining methods based on their support for discovering resource patterns [61] from



16

event logs. Zhao and Zhao [97] consider role discovery separate from organizational

model mining and place mining of resource assignment rules and resource behavior

together under the term of resource allocation. Note that our review is not intended

to be comprehensive, as the focus of this research is on the topic of organizational

model mining. In the next section, we will investigate the organization model

mining literature as it is closely related to our research problem.

2.3 Organizational Model Mining

In organizational model mining, the discovered models represent knowledge ex-

tracted from event logs to describe the organizational groupings of resources. In

this section, we present a dedicated review of the organizational model mining

literature.

2.3.1 Model Discovery in Organizational Model Mining

The main focus of organizational model mining is model discovery, i.e., given

an event log recording actual process execution, construct a descriptive model

reflecting the reality captured by the log data. Below, we will look at (i) the

definitions of an organizational model in the existing research and (ii) the methods

for discovering organizational models from event logs.

Some existing research [40, 96, 19, 10] defines an organizational model as a set

of business roles. The early work by Jin et al. [40] considers resources performing

similar types of tasks in process execution as having the same roles. Based on the

idea, a performer-by-activity matrix [79] is first derived using the input event log,

and it is then fed to a clustering algorithm to distinguish between resources. The

discovered roles in their models lack a clear description, and additional knowledge

is required to interpret the meaning of those roles.

Zhao et al. [96] further take into account interactions among resources besides

the similarity in task execution to determine the set of roles. They formulate the

model discovery problem as an integer optimization problem, under the assumption

that the interactions among resources should conform to their role designation.

This method was claimed to have better performance [96] but, again, focused

merely on distinguishing among resources.

Adopting a similar idea of utilizing resource interactions, Burattin et al. [19]

propose a method to identify business roles based on clustering process activities

rather than clustering resources. First, given a process model and an event log,

edges connecting process activities are filtered based on the handover of work; then

activities are partitioned; finally, roles are derived after iterative modification of

the activity partition. A discovered model is a partition of process activities, each

representing a role performed by a few resources recorded in the log. The grouping



17

of resources is not necessarily disjoint. As such, their approach allows meaningful

interpretation of the grouping in a discovered model.

Baumgrass [10] presents an approach to derive the up-to-date role-based access

control (RBAC) policies from event log data in the context of role engineering. This

objective leads to the discovered organizational models being defined as not just the

grouping of resources into roles, but also the “permissions” assigned to those roles.

Baumgrass [10] also proposes the possibility of characterizing hierarchies within

the models, based on how the permissions of roles are related. The discovery

of the models from a given event log is achieved by using a set of pre-defined

rules mapping standard event log attributes (in the XES standard [4]) to RBAC

artifacts.

Song and van der Aalst [68] recognize that it is challenging to fully recover the

“actual organizational model in an organization” due to the limitation of informa-

tion recorded in event logs. In light of this, they define organizational models as

consisting of (i) organizational entities that can be mapped onto various organiza-

tional groupings like project teams, organizational units, functional departments,

and may be linked to each other in a hierarchical structure, and (ii) relationships

between organizational entities and process activities, which represent the capa-

bilities or responsibilities of the groups of resources. The discovery of such models

can be approached using cluster analysis or by graph partitioning on resource so-

cial networks discovered from event logs. The concept of organizational models

specified by Song and van der Aalst is adopted by many subsequent works on

organizational model mining, in which different techniques for discovering groups

are applied. Ni et al. [56] address the model discovery problem on large-scale

event logs by applying a grid-based clustering technique, which has the advan-

tage of a fast processing time independent of the number of resources. Appice [7]

and Ye et al. [95] use community detection techniques, and Yang et al. [91] use

clustering techniques to derive organizational models where resources are allowed

to be members of multiple groups. Their research aims to construct models that

can better describe the overlaps between resource groups, which are common in

real-life organizations.

The existing research introduced so far exploits event log information on how

resources performed different process activities and how they interacted with other

resources. Some work on organizational model discovery utilizes other information.

Delcoucq et al. [26] considers clustering resources based on how they performed

activities in different orders, captured by the so-called local process models [74],

i.e., subprocesses describing frequent process control-flow [78] patterns. This idea

allows the discovery of more fine-grained resource groupings, compared to the pre-

vious approaches [68, 56, 7, 95, 91]. Van Hulzen et al. [86] propose the notion of

“activity instance archetype” to capture contextual factors impacting how activity



18

instances were executed. An activity instance archetype consists of (derived) event

attributes to enable quality clustering of events. Given an event log, activity in-

stance archetypes can be discovered by applying model-based clustering on events

enriched with selected attributes. Then, resources are characterized by their exe-

cution of the discovered activity instance archetypes. Finally, resource groupings

concerned with contextual factors can be discovered. Note that the contextual

factors may include rich data beyond the activity labels in the input log.

Some work on discovering organizational models assumes the presence of context-

specific information in input event logs. Li et al. [46] propose a way to discover

organizational models in the context of knowledge maintenance organizations. A

model is represented as a graph where nodes correspond to resources at some level

of the organizational hierarchy and links describe the transfer of knowledge from

the more superior staff to the others. Model discovery exploits the interactions

among resources and categorizes resources based on the similarities of their inter-

action patterns. The core idea is comparable to that of Zhao et al. [96], only that Li

et al. [46] focus specifically on the context of knowledge transfer, i.e., interactions

among resources refer specifically to the handover of organizational knowledge.

In the work by Hanachi et al. [33], an organizational model is defined as a

graph where nodes are the resources and links define coordination among resources.

Annotations on such a graph indicate specific structural information such as hi-

erarchy and federation [33]. The procedure of constructing such a model relies

on extracting interactions of resources and investigating the connectivity of the

graph. Compared to other existing research, Hanachi’s idea is more related to

the notion of organizational structures in organizational theory [22], i.e., modeling

both organizational groupings and communication patterns. But since the model

discovery requires additional semantic information on the coordination types be-

tween resources, the applicability of their approach is subject to the availability of

that semantic information in an input log.

A similar idea is applied in the research by Sellami et al. [64] and Bouzguenda

and Abdelkafi [15]. Both consider an organizational model as a meta-model en-

riched with the so-called organizational ontology. This meta-model consists of

resources (“performers”), roles, organizational units, and resource membership. It

is enriched by a set of ontologies to characterize complex resource relationships such

as cooperation and subordination. To discover such models, the input event logs

are expected to contain additional information based on the proposed ontology,

and the outputs are graphs where nodes may denote any entity in the meta-model

(resources, roles, and organizational units) and links denote the relationships im-

plied by the interactions among resources recorded in the logs. Note again that

the applicability of these approaches depends on whether an event log records the

required ontological information.



19

2.3.2 Other Types of Organizational Model Mining

Some existing research is concerned with resource groupings but does not focus on

the discovery problem.

The work by Baumgrass et al. [11] attempts to check the conformance of orga-

nizational models against event logs. This work uses the model definition in the

previous work by Baumgrass [10], i.e., an organizational model consists of a set of

roles and their permissions. In this work, they propose an approach to checking

if the process execution as recorded in event logs conforms to given RBAC poli-

cies. Given an organizational model representing some RBAC policies, the model

is translated into Linear Temporal Logic (LTL) for conformance checking. Com-

paring the LTL predicates with the event log may reveal violations of the given

policies. As such, this work also resembles the idea of assignment rule mining (see

Section 2.2) that compares resource-activity relationships extracted from event

logs to predefined ones.

There is also research that considers using event log data to extend organiza-

tional models. The input consists of an event log and an “as-is” organizational

model, and the output is an enhanced model annotated with log information.

Model extension considers the use of resource interaction information [68] and

temporal information [7, 87].

Organizational models can be enriched by projecting resource interaction in-

formation extracted from event logs onto the resource group level. In the work

by Song and van der Aalst [68], a method for analyzing the information flows be-

tween organizational entities is presented. It aims to uncover the communication

patterns of resource groups by aggregating resource interactions (extracted from

social network mining, see Section 2.2) and mapping them onto the links between

the organizational entities that the resources belong to.

Another way to extend organizational models uses the temporal information

stored in event logs. When timestamps of events are recorded in a log, it is possible

to slice an event log into several time segments, with each corresponding to a sub-

log. Then, organizational model discovery can be applied to each of the sub-logs.

This allows tracking the changes of organizational models over time [7] and study-

ing the “lifecycle” of resource groups. In [87], a similar method is proposed, which

applies organizational model discovery to event streams to enable online analysis

of organizational models. We can view these methods as generating “snapshots”

of an organizational model at different times.

2.4 Research Gaps

This section presents an evaluation of the related work based on our solution crite-

ria (Section 1.3) and discusses the research gaps in state-of-the-art organizational



20

model mining. Motivated by the research questions, we will focus on approaches

that support model discovery from event logs and review them from the following

perspectives.

The first perspective concerns the types of event log information (Criterion C3)

and additional information utilized in model discovery (Criterion C8). An event

log may record information on multiple process dimensions. For organizational

model mining, an input log has at least the activity labels, resource identifiers, case

identifiers, and timestamps. Hence, the participation of human resources in process

execution can be analyzed based on (i) how resources perform activities, (ii) how

they are involved in different cases, (iii) how they work at different times, and

(iv) how they interact with each other in process execution. Most existing methods

only consider the information on resources performing activities. This is because

common resource grouping schemes (e.g., business roles, functional units) often

result in specialized groups of employees handling specific activities in a process.

Some methods exploit the information on resource interactions (e.g., handover

of work between resources executing adjacent process activities), in particular,

studies that focus on the reporting relationships among employees [33, 64, 15].

Yet, information related to cases and time is rarely considered when discovering

organizational models. Song and Van der Aalst [68] exploit case information in

event logs and discover employee teams assembled for collective tasks. Van Hulzen

et al. [86] exploit the “contextual factors” impacting the execution of activities,

which may include case and time information. Hence, their work contributes a

novel attempt to utilize multidimensional process information. In the meantime,

some existing methods require information additional to event logs, including the

transfer of knowledge [46], coordination types [33], and ontological data on resource

interaction types [64, 15].

The second perspective concerns whether discovered models capture the in-

volvement of resource groups in process execution, which is essential to allowing

interpretations of the discovered grouping (Criterion C4). In all existing work, dis-

covered organizational models can represent groupings of human resources. But

only some [96, 19, 10, 68, 26, 86] allow models to capture the connection between

identified resource groups and process execution. This connection should charac-

terize the precise involvement of these groups in the process, e.g., their responsi-

bilities or permissions. Establishing this connection is important for interpreting

the participation of resources in process execution.

The third perspective concerns how the discovered models are evaluated, specif-

ically, if the evaluation can be done in an objective (Criterion C5) and independent

(Criterion C6) way. From the review, we synthesize several means of evaluation in

the literature. Some existing studies only demonstrate how their proposed meth-

ods may be applied to an event log, either synthetic or collected from real-world



21

process execution, to discover organizational models [10, 96, 56, 33, 64, 15, 26]. But

there lacks an indication of the quality of the discovery outputs. Some evaluate

the quality of discovered models by comparing them to some domain knowledge

relevant to resource groupings in the process, i.e., official organizational structures

or business roles [68, 40, 19, 91, 26, 46]. Clearly, this relies on the availability of

such domain knowledge. In addition, the evaluation results can be flawed, since

human resource groupings in reality may deviate from the domain knowledge used

as the reference. Another means is to assess the effectiveness of the techniques

applied for model discovery, which often requires using a method that is specific

to the techniques. Both Appice [7] and Ye et al. [95] apply community-detection

techniques to discover organizational models and adopt modularity measures to

evaluate how effectively those community-detection techniques perform. However,

modularity measures are specific to community-detection problems and cannot be

applied to evaluate models discovered using other techniques, e.g., those based on

cluster analysis [68]. In addition, since the problem of discovering organizational

models can be considered a type of knowledge discovery from data, we consider it

necessary to assess the quality of discovered models, i.e., the output knowledge,

against the input event log data. Note that this idea is consistent with how model

quality is typically evaluated in process mining research [27, 78], i.e., by comparing

modeled behavior to log observations. However, we did not find any existing study

that considers the use of input event logs for evaluating the quality of discovered

organizational models.

Our analysis of the literature from the three perspectives has covered five out

of the eight solution criteria. We now discuss the rest (C1, C2, and C7).

For Criterion C1 (i.e., solutions should be formal), our review shows that the

majority of existing research employs formalized notation to describe the underpin-

ning concepts. Yet, in [26] and [46], relevant concepts are explained only through

the means of examples. For Criterion C2 (i.e., solutions should be conceptual),

we point out that most research describes their approaches at a conceptual level,

except the following ones.

• The proposed approach to discovering RBAC policies [10] is formulated based

on the Mining eXtensible Markup Language (MXML) [84] and the IEEE

Standard for eXtensible Event Stream (XES) [4]. They represent two stan-

dard data formats for storing event logs.

• The approach in [33] is formulated based on XES.

• The approaches in [64, 15] are formulated based on FIPA-ACL [1], a language

standard for communication messages in multi-agent systems.

All the approaches depend on specific technologies (MXML, XES, and FIPA-

ACL). Also, note that some approaches may only be applied to specific contexts,



22

i.e., RBAC [10] and knowledge transfer in organizations [46]; and some other ap-

proaches [33, 64, 15] require input in addition to event logs, as explained in our

review above.

Finally, most research satisfies Criterion C7 (i.e., solutions should be exe-

cutable) by providing software prototypes or demonstrating implementations of

their approaches through experiments. Only [56] does not report on any form of

executable solution.

Summary Table 2.1 summarizes the result of evaluating the existing approaches

in the organizational model mining literature.

Table 2.1: Evaluating state-of-the-art approaches to discovering organizational
models from event logs, based on the solution criteria introduced in Section 1.3

Approach
Criterion

C1 C2 C3 C4 C5 C6 C7 C8

Jin et al. [40] ✓ ✓ − − ✓ − ✓ ✓
Zhao et al. [96] ✓ ✓ − ✓ − − ✓ ✓

Burattin et al. [19] ✓ ✓ − ✓ ✓ − ✓ ✓
Baumgrass [10] ✓ − − ✓ − − ✓ −

Song and van der Aalst [68] ✓ ✓ − ✓ ✓ − ✓ ✓
Ni et al. [56] ✓ ✓ − − − − − ✓
Appice [7] ✓ ✓ − − − − ✓ ✓

Ye et al. [95] ✓ ✓ − − − − ✓ ✓
Yang et al. [91] ✓ ✓ − − ✓ − ✓ ✓

Delcoucq et al. [26] − ✓ − ✓ ✓ − ✓ ✓
Van Hulzen et al. [86] ✓ ✓ ✓ ✓ − − ✓ ✓

Li et al. [46] − ✓ − − ✓ − ✓ −
Hanachi et al. [33] ✓ − − − − − ✓ −
Sellami et al. [64] ✓ − − − − − ✓ −

Bouzguenda and Abdelkafi [15] ✓ − − − − − ✓ −

To recap, we identified the following research gaps that may impede the use of

the existing organizational model mining approaches in practice.

1. Event log information typically used for organizational model mining records

multiple process dimensions, but it has not yet been fully considered for

model discovery.

2. Many approaches do not describe the involvement of resource groups in pro-

cess execution, which in turn, makes it challenging to interpret the discovered

resource groupings or use the discovered models for analyzing the behavior

of those resource groups.

3. A generic method for evaluating discovered organizational models based on

input event logs is yet to be proposed.



23

Chapter 3

Conceptual Framework

In this chapter, we propose OrdinoR, a novel framework for organizational model

mining, as illustrated in Figure 3.1. We introduce a new, formalized notion of

organizational model as the foundation of the framework. Compared with the

state-of-the-art, our notion of organizational model is richer, as it specifies not only

resources and their groups but also the connection between resource groups and

the multiple dimensions of process execution, captured by the so-called execution

contexts. We will elaborate on these concepts in Sections 3.2 and 3.3.

Built upon this new notion of organizational model, the OrdinoR framework is

designed to support three types of organizational model mining tasks as follows.

1. Discovering organizational models: this task aims to construct models from

event logs to reflect the grouping of resources and their involvement in process

execution (Section 3.4).

2. Evaluating organizational models: this task aims to assess model quality by

comparing models against event logs (Section 3.5).

3. Analyzing organizational models: this task aims to examine the actual be-

havior of resource groups captured in organizational models using event logs.

Findings from such analyses can be used to provide (i) insights into group-

oriented workforce analytics and (ii) diagnostic information explaining the

results of evaluating organizational models (Section 3.6).

This chapter is based on work published in [90, 94].

3.1 Preliminaries

We start by introducing some preliminary concepts and mathematical notation.

These preliminaries will be used throughout the remainder of this thesis.



24

Evaluate 
organizational 

models

model quality

insights into 
groups and members

insights into 
groups and members

organizational model

resourcesresource groupsexecution contexts

case
types

time 
typesactivity types

case
types

time 
typesactivity types

case
types

time 
typesactivity types

Discover 
organizational 

models

Analyze 
organizational 

models

event logs

Figure 3.1: An overview of the OrdinoR framework for organizational model min-
ing. It supports three types of mining tasks: discovery, evaluation, and analysis of
organizational models using event logs

3.1.1 Sets

A set is a collection of different elements, which can be objects of any kind, e.g.,

numbers or symbols. A universe is the set of all objects of a certain kind that we

wish to consider in a given situation. For example, we may refer to Z, i.e., the set

of all integers, as the universe of integers.

We will use conventional set theory notation: ∅ for the empty set, ∈ for the

containment relation, ⊆ for subset, ∪ for set union, ∩ for set intersection, and \
for set difference. Given a finite set X, |X| denotes the cardinality of X, i.e., the

number of elements in X. For example, given X = {a, b}, we have |X| = 2. A set

is a singleton if and only if its cardinality is 1.

P(X) denotes the power set of X, i.e., the set of all subsets of X. A ∈
P(X) if and only if A ⊆ X. For example, given X = {a, b}, we have P(X) =

{∅, {a}, {b}, {a, b}}.
A partition of a set is a collection of its non-empty subsets, such that every

element in the set is contained in exactly one subset. For the previous example

X = {a, b}, we have {{a}, {b}} and {{a, b}} as two partitions. Note that the

latter can be written as {X} — this is called the trivial partition of X. For any

non-empty set, there exists a trivial partition.

Given two sets X and Y , X × Y is their Cartesian product, i.e., the set of all

ordered pairs where the first element is a member of X and the second is a member

of Y . For example, with X = {2, 3} and Y = {p, q}, we have X×Y = { (x, y) | x ∈



25

X ∧ y ∈ Y } = {(2, p), (2, q), (3, p), (3, q)}. Cartesian products can be generalized

to n sets, and each element of a Cartesian product is therefore a sequence of length

n, denoted by σ. Specifically, we use σ(i) to denote the i-th element of a sequence

σ, i.e., σ can be viewed as a function mapping the indexing set of the collection of

the n sets onto element values in the sequences. With a slight abuse of notation,

let |σ| denote the length of σ. For example, for an ordered pair σ = (3, q) in the

previous example, we have σ(1) = 3, σ(2) = q, and |σ| = 2.

A multiset generalizes the concept of a set, allowing multiple occurrences of

an element. We denote B(X) as the set of multisets over X. For example, given

X = {2, 3}, M = [22, 3] ∈ B(X) is a multiset where element 2 has two occurrences

and element 3 has one occurrence. Specifically, we will use multiset comprehension

[ f(x) | x ∈M • ϕ(x) ] to specify multisets where for every x ∈ M satisfying con-

dition ϕ, an element f(x) is considered to be part of the multiset. For example,[
x+ 1

∣∣ x ∈ [22, 3, 53] • x < 4
]
yields [32, 4].

3.1.2 Functions

A total function f : X → Y maps elements of a set X onto elements of a set Y . X

is the domain of f , i.e., dom(f) = X, and Y is the codomain of f . The range of f

is denoted as rng(f) = { f(x) | x ∈ X }, where f(x) is said to be the image of x.

f is injective if every element in its codomain is the image of at most one

element in its domain. f is surjective if every element in its codomain is the image

of at least one element in its domain. f is bijective if it is both injective and

surjective — every element in its codomain is the image of exactly one element in

its domain (one-to-one correspondence).

A partial function f : X ̸→ Y maps elements of a subset of X onto elements of

Y , i.e., dom(f) ⊆ X. f(x) is defined if and only if x ∈ dom(f).

Let f : X → Y be a function and A ⊆ X a subset of X, then the restriction of

f on A is the function f↾A : A→ Y , with f↾A(x) = f(x) for x ∈ A.

3.1.3 Processes and Human Resources

We will use notions established in the field of business process management and

process mining [27, 78]. A process consists of a set of logically connected activities

performed in an organization and captures possible alternative ways to achieve a

business goal. An instance of the execution of a process is a case. Process execution

involves resources performing a sequence of activities in the process. Resources can

be individual employees or organizational units such as project teams. Resources

can also be machines acting for humans, for example, equipment operated by

employees or a workflow system automaton working on behalf of managers.

We will use the term resource group to describe entities that represent the



26

grouping of resources. Note that a resource group may refer to either a group

of individuals, e.g., a business role or position held by employees, or a group of

organizational units, e.g., a large department that contains several smaller units.

The interpretation of resource groups depends on the interpretation of the resources

being analyzed.

3.1.4 Event Logs

Data related to process execution is recorded by process-aware information sys-

tems [78], notably in the form of event logs. An event log consists of a set of

timestamped events with a range of event attributes, providing factual information

on how activities were carried out by resources participating in process execution.

Table 3.1 shows an example event log that records the execution of an insurance

claim handling process. Rows correspond to events and columns correspond to

event attributes. For instance, the first row is an event recording that a resource

named “Pete” registered a request for an insurance claim with id “654422”, which

is related to a “bronze” customer. This activity was not performed on-site, and

the timestamp “29-08-2018 13:36” records the time when it happened.

Table 3.1: A fragment of an example event log

case id activity name timestamp resource customer type on-site

... ... ... ... ... ...
654422 register request 29-08-2018 13:36 Pete bronze no
654423 register request 29-08-2018 15:02 Pete silver no
654424 register request 29-08-2018 16:08 Pete silver no
654422 confirm request 29-08-2018 16:10 bronze
654424 confirm request 29-08-2018 16:12 silver
654423 get missing info 29-08-2018 16:28 Ann silver no
654423 confirm request 29-08-2018 16:45 silver
654423 check insurance 30-08-2018 09:09 John silver no
654424 check insurance 30-08-2018 09:22 Sue silver yes
654425 register request 30-08-2018 10:07 Bob gold no
654423 accept claim 30-08-2018 11:32 John silver no
654424 reject claim 30-08-2018 11:45 Sue silver no
654423 pay claim 30-08-2018 11:48 silver
654425 confirm request 30-08-2018 12:44 gold
654425 check insurance 30-08-2018 13:32 Mary gold yes
654425 accept claim 30-08-2018 14:09 Mary gold no
654425 pay claim 30-08-2018 14:14 gold

... ... ... ... ... ...

We define a general data structure for event logs (Definition 3.1). An event

log (EL) contains a set of uniquely identifiable events (E), a set of event attribute

names (Att), and the corresponding event attribute values carried by each event

(as specified by function π). It is possible that an event does not carry any value



27

for a given event attribute, e.g., in Table 3.1 there are events with no resource

information. Hence, function π is a partial function mapping the attributes of

events to values.

Definition 3.1 (Event Log). E is the universe of event identifiers, UAtt is the

universe of possible attribute names, and UVal is the universe of possible attribute

values. An event log is a tuple EL = (E,Att , π) with E ⊆ E, E ̸= ∅, Att ⊆ UAtt ,

and π : E → (Att ̸→ UVal ). An event e ∈ E has attributes dom(π(e)). For an

attribute x ∈ dom(π(e)), πx(e) = π(e)(x) is the attribute value of x for event e.

Next, we elaborate on the definition of event attributes needed for storing the

essential information about process execution (Definition 3.2). An event log usually

records multiple cases. Each case can be uniquely identified and is related to a

sequence of events corresponding to activities executed at some specific time. As

the minimum requirement for event logs, events have three standard attributes:

case identifier (case), activity name (act), and timestamp (time). Optionally,

an event records the resource (res) who performed the activity. In addition to

these four common attributes, an event log may record event attributes such as

customer type and cost, which vary across different processes and information

systems. Note that an event attribute is considered a discrete attribute if it has

a finite or countably infinite set of values, e.g., customer type may record only a

limited set of pre-defined customer type names (“bronze”, “silver”, and “gold” in

the example log); otherwise, it is a continuous attribute, e.g., cost may record real

numbers that are valid in the context of the corresponding business process.

Specifically, we will say that an event attribute is a case attribute if events

belonging to the same case all share an identical value for that attribute. For

example, case identifier is a case attribute.

Definition 3.2 (Event Attributes). Let C ⊆ UVal , A ⊆ UVal , T ⊆ UVal , and

R ⊆ UVal denote the universes of case identifiers, activity names, timestamps,

and resource identifiers, respectively. Any event log EL = (E,Att , π) has three

special attributes from the set D = {case, act , time}, referred to as the core event

attributes, and a special attribute res, i.e., D ∪ {res} ⊆ Att, such that for any

e ∈ E:

• D ⊆ dom(π(e)),

• πcase(e) ∈ C is the case to which e belongs,

• πact(e) ∈ A is the activity e refers to,

• πtime(e) ∈ T is the time at which e occurred, and

• πres(e) ∈ R is the resource that executed e if res ∈ dom(π(e)).



28

Given a resource r ∈ R, let [E]r = { e ∈ E | res ∈ dom(π(e))∧πres(e) = r } denote
the set of events in the log executed by that resource. [E]R =

⋃
r∈R [E]r is the set

of all events in the log that have resource information.

3.2 Execution Contexts

A key feature of the organizational models proposed in our research is the ability to

capture the involvement of resource groups in process execution. This is achieved

through the notion of execution context.

In business process execution, the groupings of resources are often associated

with certain contexts, as reflected in event logs by the different types of activities or

cases performed by resources, or the times when resources perform activities [68].

Consider the example event log of an insurance claim handling process in Table 3.1.

Pete and Bob only performed activity “register (a claim) request”, while John,

Sue, and Mary performed “check insurance” and decided whether to “accept”

or “reject” a claim. This may be related to the different business roles of these

employees. In the meantime, Bob and Mary only handled a claim from a “gold”

customer, while others only handled claims from “silver” customers. This can

be a result of the insurance company setting up separate teams serving “gold”

customers.

To reach such findings in the example above, it is essential to categorize events

into types and use them to capture those different contexts. We consider case types,

activity types, and time types (Definition 3.3) related to the three core dimensions

of process execution. This is inspired by the research on process cubes [77], which

proposes to organize events by different dimensions to enable a systematic view

and analysis of large-scale, multidimensional event data. Case types describe the

categories of cases, for example, insurance claims can be classified by the type

of customers who lodged the claims (e.g., considering “gold” customers as VIPs

and other types as normal customers). Similarly, activity types categorize activity

names into groups of relevant activities (e.g., registration, approval) and time

types categorize timestamps into periods (e.g., weekdays vs. weekends, morning

vs. afternoon).

Definition 3.3 (Case Types, Activity Types, and Time Types). Let CT , AT , and
T T denote the sets of names of case types, activity types, and time types, respec-

tively. The functions φcase : CT → P(C), φact : AT → P(A), and φtime : T T →
P(T ) define partitions over C, A, and T , respectively. We will use a special type

⊥ that is associated with all cases, all activities, and all times, i.e., φcase(⊥) = C,
φact(⊥) = A, and φtime(⊥) = T . The sets CT , AT , and T T only share this

special type and are otherwise mutually disjoint. We define CO = CT ×AT ×T T .

We now formalize the notion of execution context (Definition 3.4) as consisting



29

of a case type, an activity type, and a time type. Each execution context charac-

terizes a possible way of executing an activity in a process and can be associated

with a specific set of events that share similar characteristics. For instance, we can

relate the first two events in the example log (Table 3.1) to the same execution

context (normal case, registration activity, Wednesday). Note that an execution

context can be specified with a “wild card” for any of its constituent components

of case type, activity type, and time type. The ⊥ symbol (formally, as per Defi-

nition 3.3, ⊥ is a case type, an activity type, and a time type) is used for those

components that are not meant to be restricting. Consider for example the ex-

ecution context (normal case, ⊥, Wednesday). This execution context concerns

all process activities that are executed on Wednesdays when handling insurance

claims from normal customers, i.e., those of “silver” or “bronze” type, following

our previous example.

Definition 3.4 (Execution Context). An execution context co is an element of CO.
Given an event log EL = (E,Att , π) and an execution context co = (ct , at , tt),

[E]co = { e ∈ E | πcase(e) ∈ φcase(ct) ∧ πact(e) ∈ φact(at) ∧ πtime(e) ∈ φtime(tt) }

is the set of events in the log having that execution context.

Figure 3.2 illustrates the notion of execution context. In Figure 3.2a, events are

seen as data points in a three-dimensional space capturing information on cases,

activities, and time. An event may be related to an individual resource executing

an activity. In Figure 3.2b, event attribute values on each of the three dimensions

are partitioned by some specified collection of case types, activity types, and time

types. Each combination of a case type, an activity type, and a time type specifies

an execution context, represented as a “cube” in the data space. Resources that

originated events from the same cubes may belong to the same resource group.

time

activities

cases

resources

event

(a) events

time 
types

activity types resources

case 
types

context
execution
context
execution

(b) execution contexts

Figure 3.2: Illustration of (a) events as data points in three-dimensional space
along the dimensions of case, activity, and time, and (b) execution contexts as
“cubes” characterized by case types, activity types, and time types



30

3.3 Organizational Models

Our notion of organizational model (Definition 3.5) incorporates the concept of

execution context. While this model contains, as per usual, the resource groups

(RG) and their members (mem), it further captures the involvement of resource

groups in process execution, i.e., the “capabilities” of groups, by linking groups

with execution contexts (cap).

Definition 3.5 (Organizational Model). Let R be the universe of resource identi-

fiers. An organizational model is a tuple OM = (RG ,mem, cap) where RG is a set

of resource groups, mem : RG → P(R) maps each resource group onto its mem-

bers, and cap : RG → P(CO) maps each resource group onto its possible execution

contexts.

Figure 3.3 illustrates the proposed notion of organizational model. The many-

to-many relationships capture the fact that a resource may belong to multiple

groups and a resource group may be associated with multiple execution contexts.

Formally, there may exist two distinct groups rg1 and rg2 such that mem(rg1) ∩
mem(rg2) ̸= ∅ and cap(rg1) ∩ cap(rg2) ̸= ∅.

resourcesresource groupsexecution contexts

time 
types

activity types

case 
types

Figure 3.3: Illustration of an organizational model which captures many-to-many
relationships between resource groups and resources and those between resource
groups and execution contexts

Figure 3.4 depicts the visualization of an example organizational model, in

which different colored shapes represent resources, resource groups, and their re-

lated execution contexts, respectively. For instance, “Group 0” has two member

resources, Bob and Pete, who are capable of executing activities related to ex-

ecution contexts “(VIP, register, morning)” and “(normal, register, afternoon)”.

These two execution contexts, as the group’s capabilities, are highlighted in red in

the visualization, with the type names underlined.



31

Group 0Group 0 Group 1Group 1

MaryMary

Group 2Group 2 Group 3Group 3

VIP,⊥,⊥VIP,⊥,⊥

AnnAnn

normal,⊥,⊥normal,⊥,⊥

VIP,⊥,afternoonVIP,⊥,afternoonVIP,⊥,morningVIP,⊥,morning normal,⊥,afternoonnormal,⊥,afternoonnormal,⊥,morningnormal,⊥,morning

normal,contact,afternoon normal,register,afternoon

BobBob PetePeteBob Pete SueSueJohnJohn SueJohn

VIP,register,morningVIP,register,morning

ct,at,ttct,at,ttct,at,ttct,at,tt
resource 
(group member)

resource group
execution context 
(group capability)

other related
execution context

ct,at,ttct,at,tt
resource 
(group member)

resource group
execution context 
(group capability)

other related
execution context

Legend

Figure 3.4: Visualization of an example organizational model related to the event
log in Table 3.1

3.4 Discovering Organizational Models

To discover organizational models from an event log, it is useful to view events as

samples of resource behavior in process execution [51]. We use the term resource

event to denote an event that captures a resource’s involvement in some execution

context. A resource-event log (Definition 3.6) is a multiset of resource events and

represents a resource view on process execution data through execution contexts,

i.e., a resource-event log records how some resources performed certain activities

for certain cases at certain times when they participated in the execution of a

process. A resource-event log can be derived from an event log using a collection

of execution contexts (Definition 3.7).

Definition 3.6 (Resource-Event Log). A resource event is a tuple (r, co) ∈ R×CO.
A resource-event log RL ∈ B(R× CO) is a multiset of resource events.

Definition 3.7 (Derived Resource-Event Log). Let EL = (E,Att , π) be an

event log and let CO ⊆ CO be a pre-defined collection of execution con-

texts. The resource-event log derived from EL and CO is RL(EL,CO) =

[ (πres(e), co) | co ∈ CO , e ∈ [E]R • e ∈ [E]co ].

Table 3.2 shows an example resource-event log derived from the event log in

Table 3.1, using execution contexts defined based on the case types, activity types,

and time types below.

• Two case types are defined based on the event attribute customer type,

which distinguishes two groups of customers, namely normal (for “silver” and

“bronze” customers) and VIP (for “gold” customers). Therefore, {“654422”,
“654423”, “654424”} ⊆ φcase(normal) and {“654425”} ⊆ φcase(VIP).



32

• Four activity types are defined: register, contact, check, and de-

cide. Therefore, {“register request”, “confirm request”} ⊆ φact(register),

{“get missing info”, “pay claim”} ⊆ φact(contact), {“check insurance”} ⊆
φact(check), {“accept claim”, “reject claim”} ⊆ φact(decide).

• Two time types are defined by dividing working hours in a day into two time

frames, namely morning and afternoon. Therefore, timestamps of events

are categorized accordingly, e.g., “30-08-2018 09:09” ∈ φtime(morning),

“29-08-2018 15:02” ∈ φtime(afternoon).

Note that a resource event can have multiple occurrences. For example, the

first three rows in Table 3.2 both refer to the same resource event “(Pete, nor-

mal, register, afternoon)”, indicating that Pete conducted an activity in the same

execution context three times.

Table 3.2: A fragment of an example derived resource-event log

resource case type activity type time type

... ... ... ...
Pete normal register afternoon
Pete normal register afternoon
Pete normal register afternoon
Ann normal contact afternoon
John normal check morning
Sue normal check morning
Bob VIP register morning
John normal decide morning
Sue normal decide morning
Mary VIP check afternoon
Mary VIP decide afternoon
... ... ... ...

Organizational models can be discovered from an event log based on the sim-

ilarities of resources characterized by a corresponding derived resource-event log.

To do this, the following tasks need to be addressed:

1. Determine execution contexts by specifying the relevant case types, activity

types, and time types based on the input event log;

2. Determine resource grouping by identifying clusters of resources who share

similar behavior in process execution;

3. Determine the links between resource groups and execution contexts to de-

scribe the involvement of resource groups in process execution.

In Chapters 4 and 5, we will develop approaches for addressing these tasks,

respectively.



33

3.5 Evaluating Organizational Models

As discussed in the literature review, it remains an open issue how to evaluate

discovered organizational models against input event logs. We address this gap by

introducing two notions to organizational model mining, namely fitness and preci-

sion (cf. [78]), and their corresponding quantitative measures. The two notions are

based on the new definition of organizational model and provide two perspectives

for assessing an organizational model with respect to an event log.

3.5.1 Fitness

Fitness evaluates the completeness [32] of a model with respect to a log, i.e., to

what degree behavior observed in the log is allowed by the model. To quantify

fitness, we first introduce the notion of conforming events (Definition 3.8). Given

a log and a model, an event in the log is conforming if its originating resource is

allowed by the model to execute it.

We define a measure for fitness (Definition 3.9), which yields a value between

0 and 1. Note that only events with resource information (i.e., events in [E]R)

should be considered (hence fitness is only defined if there are events with resource

information in the event log).

Definition 3.8 (Conforming Events). Let EL = (E,Att , π) be an event log and

let OM = (RG ,mem, cap) be an organizational model.

Econf =
{
e ∈ [E]R

∣∣ ∃rg∈RG,co∈cap(rg)[πres(e) ∈ mem(rg) ∧ e ∈ [E]co]
}

is the set of all conforming events. Enconf = [E]R \ Econf consists of all non-

conforming events.

Definition 3.9 (Fitness). Let EL = (E,Att , π) be an event log with [E]R ̸= ∅.

The fitness of an organizational model OM with respect to event log EL is

fitness(EL,OM ) =
|Econf |
|[E]R|

.

The fitness between a model and a log is good when most events in the log

are conforming events. fitness(EL,OM ) = 1 if resources only performed events

in EL that they were allowed to perform according to OM . fitness(EL,OM ) =

0 if no event in EL was executed by a resource actually allowed to perform it

according to OM . Following the definitions, all events with resource information

in the example event log (Table 3.1) are conforming events. Hence, the example

organizational model shown in Figure 3.4 has a fitness of 1 with respect to the

example event log.



34

3.5.2 Precision

Precision evaluates the exactness [32] of a model with respect to a log, i.e., the

extent to which behavior allowed by the model is observed in the log. To quantify

precision, we propose the notion of candidate resources (Definition 3.10). Given

a log and a model, the candidate resources of an event refer to resources in the

model who are allowed to perform the event. The idea is that a perfectly precise

model allows exactly the behavior described in the log.

Definition 3.10 (Candidate Resources). Let EL = (E,Att , π) be an event log and

let OM = (RG ,mem, cap) be an organizational model. cand : E → P(R) maps

events onto sets of candidate resources (possibly empty). For each e ∈ E,

cand(e) =
{
r ∈ R

∣∣ ∃rg∈RG,co∈cap(rg)[r ∈ mem(rg) ∧ e ∈ [E]co]
}

is the set of candidate resources for event e. cand(E) =
⋃

e∈E cand(e) is the overall

set of candidate resources.

We also introduce the notion of allowed events (Definition 3.11). Given a

log and a model, an event in the log is an allowed event if it has at least one

candidate resource in the model. Note that if a candidate resource of an event

is the originating resource of the event, then such an event is both a conforming

event and an allowed event.

Definition 3.11 (Allowed Events). Let EL = (E,Att , π) be an event log

and let OM = (RG ,mem, cap) be an organizational model. Eallowed =

{ e ∈ [E]R | cand(e) ̸= ∅ } is the set containing all allowed events.

Based on the above, the precision of a model with respect to an event log can be

measured by considering the fraction of resources allowed by the model to perform

events in the log (Definition 3.12). Like the fitness measure, the precision measure

also yields a value between 0 and 1. Note that precision is only defined if there

are allowed events in an event log according to a model.

Definition 3.12 (Precision). Let EL = (E,Att , π) be an event log and let OM =

(RG ,mem, cap) be an organizational model, with Eallowed ̸= ∅. The precision of

organizational model OM with respect to event log EL is

precision(EL,OM ) =
1

|Eallowed |
∑

e∈Econf

|cand(E)| − |cand(e)|+ 1

|cand(E)|
.

Accordingly, precision(EL,OM ) = 1 if and only if every allowed event in EL

is a conforming event and each of them has no other candidate resource than the

one who executed the event. On the other hand, precision(EL,OM ) = 0 if and

only if none of the allowed events is a conforming event. For instance, given the



35

organizational model in Figure 3.4, the first event in the example log in Table 3.1

“(654422, register request, 29-08-2018 13:36, Pete, bronze)” has two candidate

resources, Bob and Pete, and all events with resource information are allowed

events. The precision of this model with respect to the log is 0.879, suggesting

that the model allows extra behavior to happen, in addition to that recorded in

the log.

For an organizational model discovered from an event log, fitness and precision

can be used to assess its quality in terms of how it captures the information

recorded in the log, i.e., the reality. A good discovered model is expected to

describe the reality both completely (achieving high fitness) and exactly (achieving

high precision). Fitness and precision can be incorporated into a single measure

for an overall evaluation, e.g., by calculating the F1-score [32].

3.6 Analyzing Organizational Models

In this section, we discuss how organizational models can be analyzed to examine

the behavior of resource groups. An organizational model outlines the grouping

of resources and their capabilities in terms of process execution. We can extend

a model by using event frequencies and temporal information about cases in an

event log, and thus “replay” how resource groups in the model and their members

participated in a process. As a starting point, we introduce four quantitative

measures that can be used for analyzing an organizational model. Note that all

these measures only apply to events with resource information in an event log, i.e.,

events in [E]R.

Group relative focus (Definition 3.13) specifies how much of the overall work

by a resource group was performed in an execution context. It can be used to

measure how a resource group distributed its workload across different execution

contexts, i.e., work diversification of a group. Note that group relative focus is

only defined if there are events executed by some member of the group.

Definition 3.13 (Group Relative Focus). Given event log EL = (E,Att , π), ex-

ecution contexts CO, and organizational model OM = (RG ,mem, cap), for any

resource group rg ∈ RG with { e ∈ [E]R | πres(e) ∈ mem(rg) } ≠ ∅, its relative

focus on execution context co ∈ CO can be measured by

RelFocus(rg , co) =
|{ e ∈ [E]R | πres(e) ∈ mem(rg) ∧ e ∈ [E]co }|

|{ e ∈ [E]R | πres(e) ∈ mem(rg) }|
.

Group relative stake (Definition 3.14) specifies how much of the work performed

in an execution context was done by a resource group. It can be used to measure

how the workload devoted to an execution context was distributed across differ-

ent resource groups in an organizational model, i.e., work participation by the



36

groups. Note that group relative stake is only defined if there are events having

the execution context.

Definition 3.14 (Group Relative Stake). Given event log EL = (E,Att , π), ex-

ecution contexts CO, and organizational model OM = (RG ,mem, cap), for any

resource group rg ∈ RG, its relative stake in execution context co ∈ CO, with

[E]R ∩ [E]co ̸= ∅, can be measured by

RelStake(rg , co) =
|{ e ∈ [E]R | πres(e) ∈ mem(rg) ∧ e ∈ [E]co }|

|{ e ∈ [E]R | e ∈ [E]co }|
.

Group coverage (Definition 3.15) specifies the proportion of members of a re-

source group that performed in an execution context. Note that group coverage is

only defined if there are resources in the resource group.

Definition 3.15 (Group Coverage). Given event log EL = (E,Att , π), execution

contexts CO, and organizational model OM = (RG ,mem, cap), for any resource

group rg ∈ RG with mem(rg) ̸= ∅, the proportion of group members that performed

in an execution context co ∈ CO can be measured by

Cov(rg , co) =

∣∣{ r ∈ mem(rg)
∣∣ ∃e∈[E]R∩[E]coπres(e) = r

}∣∣
|mem(rg)|

.

Group member contribution (Definition 3.16) specifies how much work con-

ducted in an execution context by a group was performed by a specific group

member. It can be used to measure how a group’s workload related to an ex-

ecution context was distributed across its members. Note that group member

contribution is only defined if at least one member of the resource group executed

an event having the execution context.

Definition 3.16 (Group Member Contribution). Given event log EL =

(E,Att , π), execution contexts CO, and organizational model OM = (RG ,

mem, cap), for resource group rg ∈ RG and execution context co ∈ CO, with

{ e ∈ [E]R ∩ [E]co | πres(e) ∈ mem(rg) } ≠ ∅, the contribution of a group member

r ∈ mem(rg) can be measured by

MemContr(r, rg , co) =
|{ e ∈ [E]R | πres(e) = r ∧ e ∈ [E]co }|

|{ e ∈ [E]R | πres(e) ∈ mem(rg) ∧ e ∈ [E]co }|
.

Consider the example organizational model in Figure 3.4. For resource group

“Group 0” and one of its capabilities (VIP, register, morning), we have:

• RelFocus(“Group 0”, (VIP, register, morning)) = 0.25,

• RelStake(“Group 0”, (VIP, register, morning)) = 1.0,

• Cov(“Group 0”, (VIP, register, morning)) = 0.5,



37

• MemContr(Bob, “Group 0”, (VIP, register, morning)) = 0,

• MemContr(Pete, “Group 0”, (VIP, register, morning)) = 1.0.

As shown above, resources in “Group 0” devoted 25% of their total workload

(indicated by RelFocus) to carrying out activities related to “registering requests

for VIP cases in the morning”; “Group 0” is the only group that contributed to

such work (indicated by RelStake) in the process; only 50% of the group members

(indicated by Cov) actually participated in this type of work, and that is resource

Pete (indicated by MemContr).

In addition to providing insights into the performance of resource groups and

their members in process execution, model analysis measures can also be used

for “diagnosing” the differences between an organizational model and a log. In

the example organizational model, we can observe that “Group 0” is the only

one that has a comparatively low group coverage in terms of its capabilities —

the model considers both of its members, Bob and Pete, capable of performing

in both execution contexts, but the event log does not show such behavior. This

explains the imperfect precision (0.879) of the model. Also, if the example model

is a discovered model, then the revealed differences may inform how the discovery

method could be improved to construct more precise models.

3.7 Discussion

This chapter presents a conceptual framework, OrdinoR, for discovering, evaluat-

ing, and analyzing organizational models using event logs. The framework is built

around a rich notion of organizational model, where resource groups are linked

to execution contexts that capture employees’ capabilities of performing different

types of activities or cases at different time periods. Based on that, organizational

models can be discovered from event logs to reflect the grouping of resources and

their involvement in process execution. The OrdinoR framework also introduces

fitness and precision. The two measures provide a rigorous means for evaluating

the quality of an organizational model against an event log, based on the extent to

how completely and exactly the model can describe the log observations. Last but

not least, the framework presents measures for model analysis, which allows an

organizational model to be extended with log data to examine the actual behavior

of resource groups captured by the model.

Our proposal of the OrdinoR organizational model mining framework con-

tributes a novel idea to the research area. First, compared to models in the lit-

erature, the new notion of organizational model characterizes the capabilities of

resource groups via execution contexts. This feature allows discovered organiza-

tional models to be used for explaining the grouping of resources and linking the



38

grouping to process execution. Therefore, the OrdinoR models are more effective

in terms of enabling analysis of resource group performance (answering RQ1.3).

Moreover, the proposal of OrdinoR introduces novel tasks and challenges regard-

ing how these organizational models may be discovered from event logs, which

paves the way for investigating RQ1.1, as will be shown in the following chapters.

Second, the model evaluation measures compare discovered models with the event

logs used as input for discovery, and independently of how the models are discov-

ered. As such, OrdinoR enables extrinsic evaluation of discovered organizational

models, providing an answer to RQ1.2.

There are many possibilities to advance the OrdinoR framework. One such pos-

sibility would be to extend the notion of execution context. The current definition

considers only the three core dimensions of process execution, i.e., case, activity,

and time, which are in line with the minimum requirement for event logs. When

additional event attributes are recorded in event logs, it is possible to consider

other dimensions that are useful for characterizing the execution of process activi-

ties — for example, location of resources originating activities or costs required to

complete activities. Execution contexts with more dimensions can enable a richer

modeling of resource groups and their capabilities.



39

Chapter 4

Learning Execution Contexts

Execution contexts form a key component in the OrdinoR organizational models.

This notion enables us to systematically combine multidimensional information in

event logs and use that to precisely characterize the involvement of resource groups

in process execution. In Chapter 3, we showed examples of case types, activity

types, and time types, and how they can be combined to define execution contexts.

Those examples can be seen as a result of manually specifying execution contexts

based on prior information, such as domain knowledge about an event log and

given analysis questions. In this chapter, we introduce an approach that supports

automatically learning execution contexts from an event log and explain why it is

desirable to have such an approach.

Let us revisit the example in Section 3.4. The four activity types imply the ex-

istence of an abstract view of the insurance claim process, e.g., “accept claim” and

“reject claim” are grouped by type “decide” as they are variants of decisions made

on insurance claims, “get missing info” and “pay claim” are grouped by “contact”

as both are likely to involve contacting the customer. This abstraction is not di-

rectly recorded in the event log (Table 3.1) but may be understood by process

owners or analysts who possess relevant domain knowledge. The two time types

correspond to a selected level of granularity of timestamps. This categorization of

events may be guided by some questions focused on analyzing the performance of

human resources during different working hours (morning vs. afternoon). While

domain knowledge and guiding questions are key to analyses of event logs, they

cannot be assumed to be readily available or sufficiently concrete [70, 85]. There-

fore, manually defining execution contexts — as shown in the example — may not

always be an option.

In the following sections, we will introduce a learning approach that aims at

exploiting the discriminative information of events embedded in the data rather

than relying on prior information. The approach requires minimal user input and

is capable of automatically extracting a set of logic rules from an event log, which



40

can then be used to define high-quality execution contexts.

This chapter is based on work published in [92].

4.1 Preliminaries

Our approach utilizes the discriminative information of events concerning resources

— that is, patterns showing event attribute values that exclusively or frequently

coappear and in combination with certain resource identifiers. Recall the previous

observation on the example event log (Table 3.1): (i) activity “register request”

only appeared with resources Pete and Bob; (ii) activity “check insurance” only

appeared with resource Mary when the customer type is “gold” and otherwise

with John and Sue. Patterns like these are often the results of the division of

labor among resources working in process execution, and our approach is designed

to utilize such information to construct execution contexts.

However, given an event log, not all event attributes can be exploited. Only

those satisfying the requirements of type-defining attributes (Definition 4.1) may

be used to define a set of types for one of the process execution dimensions (i.e.,

case, activity, and time).

Definition 4.1 (Type-Defining Attributes). Given an event log EL = (E,Att , π)

with D = {case, act , time} the core event attributes. For any e ∈ E and d ∈ D, let

• X ⊆ dom(π(e)) be some event attributes recorded in the log,

• π(e)↾X the restriction of π(e) on X, and

• V = {π(e)↾X | e ∈ E } the mappings of the attributes in X recorded in EL.

Then X is a set of type-defining attributes for d in EL, if and only if there exists

a non-trivial partition P of V , such that for all p, q ∈ P ,

p ̸= q ⇒ {πd(e) | e ∈ E ∧ π(e)↾X ∈ p } ∩ {πd(e) | e ∈ E ∧ π(e)↾X ∈ q } = ∅ ,

i.e., the partition P corresponds to a partition of the set of distinct values of d

recorded in EL.

In the example event log (Table 3.1), case attribute customer type is a type-

defining attribute for case types — each case records at most one customer type

value, and any partitioning over customer types will result in distinct groups of

cases. Note that multiple type-defining attributes can be used for a process di-

mension. For instance, a case attribute insurance type may exist in the example

log and the values can be combined with customer type values to categorize cases

into disjoint groups, e.g., (“gold”, “health insurance”) and (“silver”, “car insur-

ance”/“boat insurance”). By contrast, consider another example: for activity



41

types, event attribute on-site alone does not qualify as a type-defining attribute

— activity name “check insurance” may correspond to either “yes” or “no” for

on-site. Hence, there exists no partition over the attribute values of on-site that

can induce a partition of the set of distinct activity names.

By this definition, any core event attribute can be used as a type-defining

attribute for itself.

4.2 Problem Modeling

In this section, we introduce how we model the problem of learning execution

contexts from an event log. We first present the idea of categorization rules that

represent the classification of case types, activity types, and time types. Then, we

discuss how to measure the quality of execution contexts with regard to an event

log. Finally, we formulate the execution context learning problem based on the

notion of categorization rules and the proposed quality measures.

4.2.1 Categorization Rules

A set of execution contexts specifies a way of partitioning events by defining case

types, activity types, and time types. Hence, learning execution contexts from an

event log requires learning those types, i.e., the classification of cases, activities,

and times. To this end, we propose to use categorization rules to represent types.

A categorization rule (Definition 4.2) is a Boolean formula in conjunctive nor-

mal form, consisting of one or more clauses. Each clause can evaluate an event by

its value of some event attribute. For instance, customer type ∈ {normal} ∧ cost ∈
[10000,∞) is a categorization rule that evaluates a discrete attribute customer type

and a continuous attribute cost. Given a set of events, evaluating this rule filters

events that record normal customers and cost greater than or equal to 10000.

Definition 4.2 (Categorization Rule). Given an event log EL = (E,Att , π), let

d ∈ D be a core event attribute, and let X ⊆ Att be a set of type-defining attributes

for d. ϕ =
∧

x∈X x̄ <− Ūx is a categorization rule, where Ux ∈ P(UVal ) is a set of

attribute values for an attribute x ∈ X. For any e ∈ E, ϕ can be evaluated as

follows: JϕK (e) =
∧

x∈X
q
x̄ <− Ūx

y
(e) =

∧
x∈X πx(e) ∈ Ux.

• [E]ϕ = { e ∈ E | JϕK(e) } is the set of events in the log satisfying the catego-

rization rule ϕ.

• We introduce a default rule true such that JtrueK(e) = true for all e ∈ E.

It follows that [E]true = E.

• Any two categorization rules ϕ1 and ϕ2 are equivalent, i.e., ϕ1
∼= ϕ2, if and

only if [E]ϕ1 = [E]ϕ2 for any E ⊆ E. Otherwise, we write ϕ1 ≇ ϕ2.



42

A set of categorization rules can be used to define a set of types on an event

log (Definition 4.3). Consider the example of grouping customer types into normal

customers and VIPs to define case types. This can be defined as a set of rules

Φ1 = {customer type ∈ {silver,bronze}, customer type ∈ {gold}}, as long as a

customer can only be either gold, silver, or bronze. But, another example of three

rules, Φ2 = {customer type ∈ {gold}, customer type ∈ {silver}, customer type ∈
{bronze}}, would also define different case types that are specific to each customer

type.

Definition 4.3 (Defining Types as Categorization Rules). Given an event log

EL = (E,Att , π), let d ∈ D be a core event attribute. Φ is a set of categorization

rules that define a set of types on d, if and only if:

1. for any ϕ1, ϕ2 ∈ Φ with ϕ1 ̸= ϕ2, {πd(e) | e ∈ [E]ϕ1 }∩{πd(e) | e ∈ [E]ϕ2 } =
∅; and

2.
⋃

ϕ∈Φ {πd(e) | e ∈ [E]ϕ } =
⋃

e∈E{πd(e)},

i.e., the subsets of events satisfying categorization rules in Φ induce a partition of

all values of d recorded in EL.

Execution contexts can be defined by three sets of categorization rules that

define case types, activity types, and time types, respectively (Definition 4.4). Note

that the use of categorization rules provides a different representation from the

one we introduced. In Chapter 3, we formalized the concept of execution contexts

based on the names of types and their mapping to the core event attributes (case,

act, time). That representation serves as a general data structure for execution

contexts, but does not associate them with other event attributes (e.g., customer

type) in a given event log. Here, the use of categorization rules enables a clear

connection between the input (event attributes and values in a log) and the output

(execution contexts), which is essential to solving the learning problem.

Definition 4.4 (Defining Execution Contexts as Categorization Rules). Given an

event log EL = (E,Att , π), let Φcase , Φact , and Φtime be three sets of categorization

rules that define case types, activity types, and time types, respectively. CO =

Φcase × Φact × Φtime is a set of execution contexts defined by the three sets of

categorization rules.

CO specifies a way of partitioning EL. Given an execution context co =

(ϕc , ϕa , ϕt) ∈ CO, [E]co = [E]ϕc ∩ [E]ϕa ∩ [E]ϕt is the set of events in the log

having that execution context.

4.2.2 Quality Measures for Execution Contexts

Given an event log, any categorization rules — as long as they fulfill the require-

ment (Definition 4.3) — can be proposed for defining types (recall the two alter-



43

`̀̀

vs.

(a) resources are generalized

vs.

(b) resources are specialized

Figure 4.1: High-quality execution contexts should reflect the specialization of
resources, so it is desirable to use a small number of dedicated execution contexts
(cells) to characterize resource behavior recorded in events

natives of grouping customer types to define case types). This means that many

candidate sets of execution contexts may exist for the same input event log. In

this section, we discuss how to measure the quality of execution contexts learned

from event logs.

Execution contexts can be applied to characterize resource behavior that con-

cerns certain process execution features determined by the specialization of work,

a.k.a. division of labor [22]. On the one hand, when specialization is low in a

process, resources tend to be interchangeable when performing in process execu-

tion, and events that they originated tend to be similar. On the other hand, when

specialization is high, resources are limited to undertaking specific kinds of tasks,

as exhibited by the differences among their originated events. This idea motivates

us to consider the following criteria for a set of high quality execution contexts:

(i) events in the same execution contexts should be originated by few resources,

and (ii) events originated by the same resource should be partitioned into few

execution contexts.

Figure 4.1 illustrates the idea. When resources are considered generalized due

to low specialization of work, a small number of execution contexts should be

sufficient, therefore the left execution contexts in Figure 4.1a are better. When

resources are highly specialized, it is desirable to have dedicated execution con-

texts for each of them to capture their specific characteristics, therefore the right

execution contexts in Figure 4.1b are better. Following this idea, we define two

quality measures, namely impurity and dispersal.

Impurity measures the extent to which the same execution context contains

events originated by different resources (Definition 4.5). High-quality execution

contexts have low impurity, i.e., an execution context can specifically characterize

the behavior of a limited number of resources. This is built upon the existing

measure of entropy in data mining [32].

Definition 4.5 (Impurity). Let EL = (E,Att , π) be an event log and CO a set of



44

execution contexts,

Imp(EL,CO) =
1∑

r∈R pr log2 pr

∑
co∈CO

(
|[E]R ∩ [E]co |
|[E]R|

×
∑
r∈R

pr,co log2 pr,co

)

is the impurity of CO with regard to EL, where

pr =
|[E]r|
|[E]R|

, pr,co =
|[E]r ∩ [E]co |
|[E]R ∩ [E]co |

are the relative frequency of events originated by a resource r in terms of the entire

log and an execution context co, respectively.

Impurity yields a value in [0, 1]. If there is only one execution context for all

events in a log, then Imp(EL,CO) = 1.

Dispersal measures the extent to which events originated by the same resource

disperse across different execution contexts (Definition 4.6), and yields a value in

[0, 1]. High-quality execution contexts have low dispersal, i.e., the behavior of an

individual resource can be characterized by a limited number of execution contexts.

Definition 4.6 (Dispersal). Given an event log EL and a set of execution contexts

CO,

Dis(EL,CO) =
∑
r∈R

(
|[E]r|
|[E]R|

×
∑

e1,e2∈[E]r
dCO(e1, e2)(|[E]r|
2

) )
is the dispersal of CO with regard to EL, where dCO(e1, e2) denotes the distance

between any two events e1, e2.

Let us define the distance between events considering the given set of execution

contexts CO . Any event e ∈ E corresponds to a unique execution context coe =

(cte, ate, tte) ∈ CO , for which e ∈ [E]coe . Then, for any two events e1, e2 ∈ E,

we define the distance between them using their corresponding execution contexts

coe1 = (cte1 , ate1 , tte1) and coe2 = (cte2 , ate2 , tte2), that is,

dCO(e1, e2) =
[cte1 ≇ cte2 ] + [ate1 ≇ ate2 ] + [tte1 ≇ tte2 ]

ndim
, (4.1)

where [φ] is the Iverson bracket that returns 1 if a boolean formula φ holds and 0

otherwise, and ndim ∈ {1, 2, 3} is the number of process dimensions considered in a

set of execution contexts. By default, we let ndim = 3. However, it is possible that

there are not any types defined on a dimension. For example, the case dimension

can be omitted if, for any (ct , at , tt) ∈ CO , ct = ϕtrue, and thus we have ndim = 2.

Specifically, if there is only one execution context for all events in a log, then

Dis(EL,CO) = 0.

We can combine impurity and dispersal into a single score measuring the overall

quality of execution contexts. In this research, we use the harmonic mean as



45

domain knowledge about 
the log and its process

Derive 
Attribute Specification

type-defining 
attribute sets

user-specified 
rules

event log

Induce 
Categorization Rules

Search for 
Optimal Rules

Parse and 
Evaluate Rules

End criteria 
satisfied?

Parse and Return 
Best Rules

Start induction End induction

False

True

execution contextsexecution contexts

Figure 4.2: An illustration of the proposed approach to learning execution contexts
from an event log

follows.

score(EL,CO) =
2

(1− Imp(EL,CO))−1 + (1−Dis(EL,CO))−1
. (4.2)

Note that we subtract impurity and dispersal from 1 so that a higher score indicates

better execution context quality.

4.2.3 Problem Statement

With a viable representation of execution contexts and measures to assess their

quality, we now formalize the problem of learning execution contexts: Given an

event log, derive three sets of categorization rules that define case types, activity

types, and time types, respectively, such that the resulting execution contexts have

high quality with respect to the input log.

4.3 Problem Solution

To address the stated problem, we propose an approach that aims at iteratively

searching for the optimal categorization rules. Figure 4.2 illustrates the approach.

Below, we elaborate on each of the steps involved.

4.3.1 Deriving Attribute Specification

Input to the approach consists of an event log and domain knowledge from the user.

First, an attribute specification (Definition 4.7) is derived to capture user domain



46

knowledge about the event attributes in the log. An attribute specification com-

prises (i) XEL
case , X

EL
act , X

EL
time , which are three sets of type-defining attributes (see

Definition 4.1) regarding case types, activity types, and time types; and optionally

(ii) Λ, which is a function that maps type-defining attributes onto categorization

rules supplied by users to capture any existing categorization of attribute values.

If no rules are supplied by users for any event attribute x, then Λ(x) = ∅.

All type-defining attributes in an attribute specification are expected to be

discrete attributes. For continuous attributes stored in the input event log, their

numeric values are expected to have been discretized, i.e., replaced by categorical

or interval labels. For example, attribute cost records many positive real numbers

that can be discretized by intervals like [0, 10000) and [10000,∞). Data discretiza-

tion is common in data preprocessing and can be approached in many ways such

as histogram analysis [32].

Users can specify whether supplied categorization rules are normative or infor-

mative. If a rule is normative, it indicates that certain values of an event attribute

have to be categorized together for any rules involving this attribute. Otherwise,

it is informative and can be used in the subsequent search as heuristics, but is not

enforced.

Definition 4.7 (Attribute Specification). Let EL = (E,Att , π) be an event log

and let Φ be the set of all possible categorization rules defined on Att. S =

(XEL
case , X

EL
act , X

EL
time ,Λ) is an attribute specification on EL for learning categoriza-

tion rules. XEL
case ⊆ Att, XEL

act ⊆ Att, and XEL
time ⊆ Att are three disjoint, non-empty

sets of type-defining attributes. Λ : Att ̸→ P(Φ) defines a set of categorization rules

for the event attributes in XEL
case

⋃
XEL

act

⋃
XEL

time .

An attribute specification informs how attribute values should be handled in

the following step of categorization rules induction. Below, we introduce how that

can be approached by following two alternative schemes, decision tree learning and

simulated annealing.

4.3.2 Inducing Rules via Decision Tree Learning

In decision tree learning, a dataset of multivariate data tuples is iteratively par-

titioned into smaller subsets by deriving splitting rules regarding data attributes.

The output can be represented in a tree structure, where tree nodes hold the

subsets of the input data and branches record the disjunctive splitting rules used

to obtain the subsets. Decision tree learning is a common solution for classifica-

tion tasks, where splitting rules are often derived following a greedy heuristic that

minimizes the information needed to classify data tuples.



47

Searching for Optimal Rules

Decision tree learning provides an intuitive means for solving the problem of learn-

ing execution contexts — to derive categorization rules that result in the parti-

tioning of events by event attributes. Note that the learning of execution con-

texts imposes unique challenges compared to conventional decision tree learning

for predictive tasks like classification and regression: (i) we require splitting rules

extracted from a decision tree to be categorization rules which can be used for

defining types; and (ii) the goal of learning is to derive high-quality execution con-

texts instead of training a predictive model that aims at high accuracy. To address

these issues, we need to customize the generic decision tree learning method.

For the first issue regarding categorization rules, we choose to construct Obliv-

ious Decision Trees (ODT) [43]. An ODT is different from a conventional decision

tree in such a way that an ODT’s nodes at the same level are constructed by split-

ting rules based on the same data attribute. For any two leaf nodes on an ODT,

if we project their data subsets onto a split attribute, then the two projected sets

are either disjoint or identical. This feature ensures that a learned ODT can be

used to produce categorization rules for defining types.

For the second issue regarding the learning goal, we use the harmonic-mean-

based quality score (Equation 4.2). Therefore, whenever there exist several sets of

categorization rules as candidates, we choose the one that grows the current tree

with the highest quality.

Algorithm 1 describes the customized decision tree learning method. It begins

with an empty root node that holds all events in a given log (Line 2). At each

iteration, it attempts to find the best split, i.e., the best type-defining attribute and

the corresponding categorization rules to be applied (Line 4). The selection is done

through a sub-procedure FindBestSplit (Lines 15–26). If the result categorization

rules are equivalent to the user-supplied rules for that selected attribute, then the

user-supplied rules are discarded from future iterations (Line 6). Specifically, if

those rules are normative, then the selected attribute is discarded (Lines 7–8) to

ensure that user-supplied normative rules are enforced. If the best split can be

found, the tree is updated (UpdateTree), i.e., applying the categorization rules

to every leaf node in the attempt to grow a subtree therein (Lines 10–11). This

ensures that the tree is iteratively constructed as an ODT. The decision tree keeps

growing until one of the end criteria is met, i.e., the next best split cannot be

found (Lines 12–13) or the height of the decision tree exceeds a preset maximum

value (Line 3). After the tree induction halts, events held by the leaf nodes of the

tree correspond to the induced categorization rules. We then use the leaf nodes

and the split rules derived during tree induction to parse for execution contexts

(Line 11). We elaborate on the parsing step in the next section.

FindBestSplit (Lines 15–26) is a sub-procedure that cherry-picks a type-defining



48

attribute and the corresponding categorization rules, i.e., the best split. First, for

each type-defining attribute, the user-supplied categorization rules are retrieved,

if they exist (Lines 18–19). Otherwise, consider this attribute a generic data at-

tribute and generate sets of candidate rules based on the partition of attribute

values (Lines 20–22), for example, randomly choose one from the existing parts

and randomly split it into two smaller parts. Then, among all generated rules,

select the set that would lead to an expanded tree with the highest quality. In ei-

ther case, a set of best rules for each type-defining attribute is determined. Finally,

return the attribute and its corresponding rules that would lead to the highest qual-

ity (Lines 24–25). Note that type-defining attributes are used with replacement

when constructing a tree unless there are user-supplied normative rules defined.

Therefore, values of a type-defining attribute may be split more than once in tree

induction.

EvaluateRules (Lines 27–29) tests a set of rules by applying them to the current

tree (i.e., tree given as an input) and creating a “test tree” (i.e., tree ′), which can

then be parsed and evaluated. The quality of the execution contexts corresponding

to this “test tree” represents the quality of the input set of rules. We elaborate on

this in the following section.

The values of dispersal and impurity are expected to show opposite trends as a

decision tree grows. Initially, all events are placed together. Hence, dispersal is 0

while impurity is 1. As the decision tree grows, the number of leaf nodes increases

(so is the number of their corresponding execution contexts), which leads to an

increase in dispersal and a decrease in impurity.

Parsing and Evaluating Rules

As mentioned, the parsing and evaluation of categorization rules happen both when

we need to evaluate intermediate solutions and when we need to obtain the optimal

final result after the search terminates. In the context of decision tree learning,

we first follow the conventional way of rule extraction from a decision tree. That

is, for each path from the root to a leaf node, a decision rule is formed as a logical

conjunction of all the rules recorded along the path. Then, for every decision

rule obtained, we use the attribute specification as a reference to determine which

part of the decision rule is related to case types, activity types, or time types,

respectively. Formally, every such decision rule ϕ can be written as a conjunction

(ϕc ∧ ϕa ∧ ϕt), where any of ϕc, ϕa, ϕt can be a default rule (ϕtrue) if no type-

defining attributes are included for any of the core event attributes.

As such, we will be able to transform a decision rule related to a leaf node

of a decision tree into an execution context co = (ϕc, ϕa, ϕt). A set of execution

contexts CO is obtained by parsing the categorization rules for all leaf nodes.

Then, we can calculate the impurity (Definition 4.5) and dispersal (Definition 4.6)



49

Algorithm 1: Applying decision tree learning to induce categorization
rules
input : EL = (E,Att , π), an event log;

S = (XEL
case , X

EL
act , X

EL
time ,Λ), an attribute specification;

H, the maximum height of the tree to be induced
output: a decision tree encoding the induced categorization rules

1 X ← XEL
case ∪XEL

act ∪XEL
time

2 Initialize tree as a single root node holding all events E
3 for h← 1 to H do

/* find an attribute and corresponding rules */

4 x,Φ← FindBestSplit(tree, X,Λ)
5 if Φ = Λ(x) then
6 Λ(x)← ∅
7 if Φ is normative then
8 X ← X \ {x}
9 if Φ ̸= ∅ then

10 for leaf ∈ tree do
11 tree ← UpdateTree(tree,Φ)

12 else
13 break

14 return tree
15 Function FindBestSplit(tree, X,Λ):
16 x∗ ← ∅ ; Φ∗ ← ∅ ; Q∗ ← ParseEvaluate(tree)

/* test on all attributes */

17 for x ∈ X do
18 if Λ(x) ̸= ∅ then

/* use user-supplied rules, if exist */

19 Φ′ ← Λ(x)

20 else
/* otherwise, generate rules randomly */

21 Generate C, a set of rules that partition the values of x
/* select candidate rules that lead to the highest

quality */

22 Φ′ ← maxΦ∈C (EvaluateRules(tree,Φ))

23 Q′ ← EvaluateRules(tree,Φ′)
/* select attribute that leads to the highest quality */

24 if Q′ > Q∗ then
25 Q∗ ← Q′ ; x∗ ← x ; Φ∗ ← Φ′

26 return x∗,Φ∗

27 Function EvaluateRules(tree,Φ):
/* test a set of candidate rules */

28 tree ′ ← UpdateTree(tree,Φ′)
29 return ParseEvaluate(tree ′)

of CO to evaluate its quality.

Let us analyze the time complexity of applying decision tree learning to induce



50

categorization rules. We refer to Algorithm 1 and adopt the worst-case estimate,

assuming that (i) at each iteration, any split results in all leaf nodes being split

into two; (ii) the tree induction continues until the tree grows to the maximum

height allowed, or all possible splits are exhausted; and (iii) no user-supplied rule

is available for any type-defining attribute. Note that the last condition means

that for any attribute, rules have to be randomly generated (Lines 20-22), leading

to a set of candidates |C| to be parsed an evaluated. The number of candidates

is at most 2n−1 − 1, i.e., no split has been applied to an attribute with n distinct

values. Clearly, in practice, it is infeasible to enumerate all possible candidates.

Hence, we assume |C| is bounded by some given neighborhood size N , i.e., |C| =
min (N, 2n−1 − 1).

Denote the number of events in the input log by |E| and the number of distinct

resources by R = |rng(πres)|. Let M be the number of loops for tree induction

(the loop in Lines 3–13). By the worst-case assumption, M is bounded by H

and the number of loops required to exhaust all possible splits. The latter can

be determined based on the number of distinct values of type-defining attributes.

Therefore, M = min
(
H,
∑

x∈X |rng(πx)| − 1
)
. At each iteration h ∈ [1,M ], we

denote l the number of leaf nodes — in the worst case, we have l = 2h. FindBestSplit

requires looping over |X| attributes. UpdateTree applies a candidate set of rules

to create a “test tree” for evaluation. This takes O (l), i.e., every existing node

is split into two. Then, the evaluation calculates impurity and dispersal. The

calculation of impurity takes O (lR) by Definition 4.5. The calculation of dispersal

would take O
(
|E|2

)
by Definition 4.6 — however this can be alternatively done in

O
(
l2R
)
since the pairwise event distance is defined based on the pairwise execution

context distance. Therefore, the parsing and evaluation for each candidate take

O
(
lR+ l2R

)
. And the complexity at iteration h is thus O

(
2hRN |X|+ 4hRN

)
.

Summing up, the overall time complexity of applying decision tree learning in

the worst case is O
(
2MRN |X|+ 4MRN

)
. In other words, the time complexity is

linear to the number of resources in the log (R), the neighborhood size (N), and

the number of type-defining attributes (|X|); and it is exponential to the given

maximum tree height and the total number of distinct values of type-defining

attributes (M).

Conclusion The customized decision-tree-based method provides an intuitive

solution to inducing categorization rules. This method constructs a set of execution

contexts by gradually splitting an event log toward lowering impurity and dispersal.

The tree representation may be utilized to understand how execution contexts are

derived incrementally. But it has certain limitations. The initial state is always a

root node holding all events, and the partition of events will only be modified in

a sequential forward manner. Also, the tree induction procedure follows a greedy



51

heuristic, as splits happen only if the expanded tree in the next iteration has better

quality compared to the current iteration. Consequently, for some given input, the

decision-tree-based method is likely to produce outputs close to the same locally

optimal results. To overcome these limitations, we introduce the second solution

that applies the simulated annealing algorithm to search for near-global-optimal

categorization rules.

4.3.3 Inducing Rules via Simulated Annealing

Simulated Annealing (SA) is an established technique for solving many generic

combinatorial optimization problems [69]. SA enables searching for near-global-

optimal solutions in a solution space (i.e., the universe of all solutions to the

problem at hand) having many poor local optima. The core idea is based on the

analogy of metal cooling in thermodynamics [42]. The search strives to find better

solutions iteratively but allows moving to worse solutions by some probability,

which is initially high and decreases gradually — as the “system temperature” cools

down. This way, SA may explore a wider solution space and avoid being trapped in

a local optimum. In the meantime, it has fewer parameters to configure, compared

to other heuristic techniques such as the Genetic Algorithm. SA has been shown

to be a robust and relatively efficient algorithm for solving single-objective as well

as multi-objective optimization problems [66].

Search for Optimal Rules

To apply SA, we first need to encode the solutions to the problem, define the

objective function and constraints, and configure the search parameters.

Here, a solution to the problem is a set of categorization rules that define execu-

tion contexts. Following the definition of categorization rules (see Definition 4.2),

we encode solutions as partitions on the values of every type-defining attribute

given in an attribute specification. As mentioned, note that all input attributes

are expected to be discrete, hence the partitions are finite sets. Formally, such a

solution in the form of partitions is a mapping,

P : UAtt ̸→ P(P(UVal )) .

For any type-defining attribute x ∈ X = XEL
case ∪XEL

act ∪XEL
time , P (x) is a partition

of its attribute values.

A mapping P specifies a set of categorization rules that define execution con-

texts. For x ∈ X, the set of categorization rules specified by P is

Φx =
{
ϕ(x, p)

∣∣ p ∈ P (x)
}
, with ϕ(x, p) = x̄ <− p̄ .



52

Note that ϕ(x, p) is a categorization rule by Definition 4.2. For any core event

attribute d ∈ D, a set of types can be defined as the conjunction of the rules for

all its related type-defining attributes. Take the activity dimension as an example

(that is, d = act). Activity types can be defined by the conjunction of rules for

attributes in XEL
act . Formally, let I be some indexing set for XEL

act , then an attribute

in XEL
act can be indexed by ai. The set of categorization rules that define activity

types is

Φact =
{∧

i∈I
σ(i)

∣∣∣ σ ∈×
i∈I

Φai

}
,

i.e., for each combination of the individual rules (σ(i) in the sequence σ) for an

attribute, their logical conjunction denotes a rule that defines an activity type.

Rules for case types (Φcase) and time types (Φtime) can be determined in the same

way. As a result, an encoded solution is translated into three sets of categorization

rules that define a set of execution contexts (Definition 4.4).

If normative rules are supplied by a user in the attribute specification, these

rules cannot be violated in a solution. Formally, given an attribute specification S,

where X is the union of type-defining attributes, and Λ, a function capturing user-

supplied categorization rules related to those attributes, if P is a feasible solution,

then

∄x ∈ X
[
Λ(x) is normative ∧ ∃ϕ̃∈Λ(x)

(
∀ϕ∈{ϕ(x,p) | p∈P (x) }ϕ ≇ ϕ̃

)]
.

In other words, a feasible solution should specify a set of categorization rules that

subsume existing user-supplied normative rules for any attribute.

The objective function is defined by the quality score (Equation 4.2) that com-

bines impurity and dispersal. This is consistent with the learning goal setting in

the decision-tree-based method.

Algorithm 2 describes the main procedure of applying SA to induce catego-

rization rules. It starts with initializing P , which encodes a partition over the

values of every type-defining attribute (Lines 3–9). For any attribute x ∈ X, if

there exist user-supplied rules Λ(x), the partition is defined exactly as the sets of

attribute values expressed in the rules. In addition, if those rules are normative,

then this attribute is discarded from the future modification of P . Otherwise, we

can initialize a partition ϱ using (i) empty initialization: ϱ ← {rng(πx)}, i.e., the
trivial partition; or (ii) random initialization: ϱ is a partition randomly sampled

from P(rng(πa)). Then, the initial solution is parsed and evaluated (ParseEvaluate,

Line 11), which is done by translating it into a set of execution contexts and cal-

culating impurity and dispersal.

Then, an optimal solution can be derived via searching (Lines 12–22). The

search starts by taking the initial solution as the current best and setting the



53

initial temperature (Lines 12–13). The following steps then iterate: generating

a neighboring solution (Line 16), deciding probabilistically whether to accept the

neighboring solution by comparing it to the current one (Lines 17–19), and updat-

ing the tracked best solution (Lines 20–21). The temperature gradually decreases

during the iteration following the selected cooling schedule (Line 22), until it drops

below the minimum temperature allowed, i.e., the end criterion is satisfied. The

search halts and returns the best solution found so far as the final solution.

Algorithm 2: Applying simulated annealing (SA) to induce categoriza-
tion rules
input : EL = (E,Att , π), an event log;

S = (XEL
case , X

EL
act , X

EL
time ,Λ), an attribute specification;

N , neighborhood size;
T0, the initial system temperature;
Tm, the minimum temperature allowed;
A cooling schedule

output: P ∗, a set of partitions to be parsed for the optimal categorization
rules

1 X ← XEL
case ∪XEL

act ∪XEL
time

// initialize solution and evaluate

2 P ← ∅
3 for x ∈ X do
4 if Λ(x) ̸= ∅ then
5 Initialize a partition ϱ according to Λ(x)
6 if Λ(x) is normative then
7 X ← X \ {x}
8 else
9 Initialize a partition ϱ on the attribute values {πx(e) | e ∈ E }

10 P ← P ∪ {(x, ϱ)}
11 Q← ParseEvaluate(P )

// search iteratively

12 P ∗ ← P ; Q∗ ← Q
13 T ← T0

14 while T ≥ Tm do
15 for i← 1 to N do
16 P ′ ← GenerateNeighbor(P,X)
17 Q′ ← ParseEvaluate(P ′)

// determine acceptance of the neighbor solution

18 if Q′ > Q ∨ Random(0, 1) < e
Q′−Q

T then
19 P ← P ′, Q← Q′

// update the best solution if current is better

20 if Q > Q∗ then
21 P ∗ ← P , Q∗ ← Q

22 Decrease T according to the cooling schedule

23 return P ∗



54

Algorithm 3 describes how a neighboring solution is generated based on the

current one. To begin with, an attribute a is randomly selected, and the partition

of its values P (a) will be randomly modified. We consider two operators, split and

merge, which have equal probabilities of being applied to P (a) (Line 4).

• A split can be applied to a partition unless all parts are singletons (Lines 10–

11). A split is done by randomly selecting a non-singleton part (Line 13) and

then choosing two non-empty, proper subsets to substitute it in the partition

(Lines 14–17).

• A merge can be applied to a partition unless it is a trivial partition (Lines 20–

21). A merge is done by randomly selecting two parts without replacement

(Line 23) and then using their union to substitute them in the partition

(Lines 23–24).

We discuss how to configure the parameters. Neighborhood size (N) controls

the number of neighboring solutions to generate and test at each iteration (Line 15).

With a larger N , SA tests more solutions and vice versa. This resembles the set of

candidate rules in the decision-tree-based method (cf. Line 21 in Algorithm 1, the

set C). The initial system temperature (T0), the minimum temperature allowed

(Tm), and the cooling strategy are specific to SA. Together, these determine the

search behavior: when the system temperature is high (T → T0), the search tends

to explore a wide range of the solution space by accepting worse solutions with

high probability; when the temperature is low (T → Tm), the search tends to move

greedily by accepting only better solutions; and the cooling schedule decides how

T decreases from T0 to Tm. Configuring the temperatures and the cooling schedule

allows the proposed SA-based method to produce near-global-optimal execution

contexts. However, to give a theoretical estimate of the “optimal” parameter values

is nontrivial and is nonunique to the problem of learning execution contexts. In

applying SA, it is common to empirically determine the temperature parameters

and the cooling schedule through experiments on the same dataset (in this case, an

event log and an attribute specification). For more details, refer to the dedicated

literature [89, 5, 36].

Let us analyze the time complexity of the SA-based method. We focus on

the iterative part (Lines 14–22 in Algorithm 2). Denote M as the number of the

outer while-loops. If the selected cooling schedule is a static schedule [5], then M

can be determined by T0 and Tm. For example, with the widely-used exponential

schedule [42], Tk = αkT0, we have M = ⌈logα(Tm/T0)⌉. To derive M in the cases

of dynamic schedules is complex and should be done by consulting the literature

on analyzing the complexity of SA.

The inner for-loop (Lines 15–21) is specific to the problem of learning execution

contexts. At some temperature T , N neighbors are generated and tested. For each



55

Algorithm 3: Generating a neighbor solution via splitting or merging
an existing partition on the values of an event attribute

input : P , a set of partitions encoding a solution;
X, a set of event attributes

output: P ′, a set of partitions encoding a neighbor solution
1 Function GenerateNeighbor(P , X):
2 Select an attribute x← Sample(X)

// modify the partition of the values of x
3 P ′ ← P
4 if Sample([0, 1)) < 0.5 then
5 P ′ ← P ′ ⊕ {(x,Split(P (x)))}
6 else
7 P ′ ← P ′ ⊕ {(x,Merge(P (x)))}
8 return P ′

9 Function Split(ϱ):
// modify by randomly splitting one part into two

10 if { s ∈ ϱ | |s| > 1 } = ∅ then
// all parts are singletons

11 ϱ′ ← ϱ

12 else
13 Select a part p← Sample({ s ∈ ϱ | |s| > 1 })
14 ϱ′ ← ϱ \ {p}

// split the part into two

15 Select a subset q ← Sample(P(p) \ {∅, p})
16 p← p \ q
17 ϱ′ ← ϱ′ ∪ {p, q}
18 return ϱ′

19 Function Merge(ϱ):
// modify by randomly merging two parts

20 if |ϱ| = 1 then
// trivial partition

21 ϱ′ ← ϱ

22 else
// select two parts without replacement

23 p← Sample(ϱ) ; q ← Sample(ϱ \ {p})
// merge two parts

24 ϱ′ ← ϱ \ {p, q} ∪ {p ∪ q}
25 return ϱ′

neighbor, ParseEvaluate takes O
(
lR+ l2R

)
, where l is the number of execution

contexts corresponding to the solution at the current step and R is the number

of distinct resources in the input log. Note that this is the same as the parsing

and evaluation in the decision-tree-based method. Due to the probabilistic nature

of SA in accepting solutions, it is challenging to determine l. Here, we consider

an upper bound for the worst-case estimate, l ≤ |{π(e)↾X | e ∈ E }|. This upper

bound states that, for any solution, it encodes a set of partitions that are not finer



56

than the partitions constructed from enumerating every observed combination of

distinct type-defining attribute values in the log. Determining the acceptance of

neighbor solutions takes O (1).

The overall complexity is therefore O
(
MRNl2

)
, which is linear to the number

of outer loops (M , determined by the configuration of temperatures and cooling

schedule), the number of resources (R), and the set neighborhood size (N); and it is

quadratic to the number of unique combinations of distinct type-defining attribute

values observed in the log (i.e., the upper bound of l).

Parsing and Evaluating Rules

This step was discussed in the previous introduction to solution encoding — a

set of partitions corresponds to a set of categorization rules, which can then be

evaluated.

Conclusion The SA-based method is an improved solution to inducing catego-

rization rules. It has several advantages over the foregoing customized decision-

tree-based method: (i) allowing random initialization, (ii) using both the split and

merge operators, and (iii) adopting an effective heuristic to avoid local optima.

As such, applying the SA-based method can lead to finding a set of execution

contexts with better quality compared to those produced by the application of

the decision-tree-based method. The SA-based method has its limitations. Its

application requires adjusting the temperature parameters and choosing a cooling

schedule — as mentioned, in practice, these are often achieved through empirical

tests and hence may cost additional time and effort to obtain high-quality results.

4.4 Evaluation

We implemented the proposed approach and evaluated it through experiments. In

this section, we first report on the experiment datasets and explain the experiment

setup. We then present the experiment results and findings.

4.4.1 Event Log Datasets

In total, five datasets were used for evaluation [81, 82, 83, 52, 18]. They contain

event logs recording business processes in real-world organizations from three in-

dustry sectors. All datasets are deposited in an online repository maintained by

4TU.ResearchData4 and are made publicly available for use by academic research.

4 4TU.ResearchData: https://data.4tu.nl/

https://data.4tu.nl/


57

Three datasets [81, 82, 83] were originally released for the Business Process In-

telligence Challenge (BPIC)5, where real-world organizations share their process

execution data and propose business questions to be addressed through the applica-

tion of process mining and other data analytics approaches. Two other sets [52, 18]

were released as case study data in published research [53, 17]. We selected these

datasets based on the following criteria:

• Data should record a minimum number of human resources, so it is pos-

sible to perform analyses regarding their organizational groupings. In our

evaluation, we use 10 as the minimum number of resources.

• Data should record at least one event attribute in addition to the core ones,

i.e., case identifier, activity name, timestamps, and resource identifier, that

can be qualified as a type-defining attribute for learning execution contexts

from event logs;

• Data should be enclosed with metadata of the recorded attributes so that

any mining and analysis results can be interpreted in a meaningful way.

Table 4.1 summarizes the basic characteristics of the selected datasets. Names

of the datasets are shortened for conciseness. Below, we introduce each event log

dataset, covering the process, the organization, and the recorded event logs. Some

of these datasets are also used in later chapters of this thesis.

Table 4.1: A summary of the characteristics of the selected event log datasets

Log Industry Timespan (months) #cases #events #activities #resources

bpic15 Government administration 57.1 5649 262628 496 72
bpic17 Banking and finance 13.3 31509 1202267 26 149
bpic18 Government administration 45.2 43809 2514266 41 165
sepsis Health services 19.2 1050 15214 16 25
wabo Government administration 16.0 1434 8577 27 48

BPIC’15 Log [81]

Log bpic15 originates from the five event logs recording a building permit applica-

tion process in five Dutch municipalities from 2009 to 2015. The data was released

for BPIC 2015, with a set of business questions that aimed at comparing the dif-

ferences between municipalities in terms of the workforce and their performance.

The process can be considered as mostly identical across the municipalities [81].

Hence, we generated a single log by merging the five event logs and preserving

unique cases and municipality identities. Note that the process contains many ac-

tivities (496), but they can be grouped into subprocesses and further into different

5 Business Process Intelligence Challenge: https://www.tf-pm.org/competitions-awards/bpi-challenge

https://www.tf-pm.org/competitions-awards/bpi-challenge


58

phases. Each resource recorded in the log refers to one of the 72 employees in the

municipalities. Most of them worked for a single municipality during the period of

data recording, while some performed tasks for different municipalities. Each case

in the log is a building permit application, for which we can determine its permit

type (e.g., construction or destruction) and its responsible resource based on the

case attributes.

We derived three additional attributes based on the original data and its de-

scription. Case attribute “case:parts Bouw” is a Boolean attribute indicating

whether an application is related to a construction permit. Event attributes “sub-

process” and “phase” were derived based on the grouping of process activities,

which is indicated by the values of an event attribute “action code” [81].

BPIC’17 Log [82]

Log bpic17 records a loan application process in a financial institute. The data

was collected from the organization’s workflow system and contains all applications

filed in 2016 and their handling up to February 2017.

For a loan application, case attributes in the data record information such as

the loan goal and application type. Also, there may be multiple offers granted for

a single application. Hence, cases contain three types of events, i.e., application

state changes, offer state changes, and workflow events. Note that in bpic17,

information about the lifecycle of activities is recorded through the transaction

type attribute [4]. This means, for an activity instance performed in process

execution, the log may have recorded more than one event pointing out its start

and completion, and intermediate states such as being assigned to a resource.

In this research, we consider only the completion of activity instances and take

resources who originated the completion events as performers of process activities.

In total, there were 149 resources involved in processing 31509 loan applications.

BPIC’18 Log [83]

Log bpic18 contains execution data of a process handling applications for direct

payments to German farmers from the European Agricultural Guarantee Fund.

The data was extracted from an enterprise system deployed in four local depart-

ments, recording the process execution from 2014 to 2018.

The application-handling process can be understood based on different docu-

ment types [83]. An application was concerned with several documents containing

various types of information required to assess the application, e.g., inspection

results and annual payments. A document was handled by some staff in a depart-

ment, following different subprocesses. Activities in these subprocesses represent

the states of the documents after being handled by the staff. In the event log,

an application corresponds to a case. An event within the case records a resource



59

(staff member) handling some document related to that application in a subpro-

cess. In other words, an activity instance in a case should be identified based on

combining the document type, the subprocess, and the state of the document. In

total, 165 resources were involved in the process execution, including non-human-

resources such as the workflow system distributing the documents (“document

processing automaton”). Many case attributes are available in this log, for exam-

ple, the application type, the type of penalties applied to applications, and the

risk assessment results of applications.

Specifically, the data description [83] notes that there were some major changes

to the document types used in the process, due to changes in regulations or techni-

cal implementation. To keep a consistent view of the activity instances in the log,

we will focus on a subset of data where cases started on or after 2017-01-01 — no

further change to document types took place after this point. The selected subset

contains 14507 cases, which comprises 33% of all cases in the original dataset.

Sepsis Cases Log [52]

Log sepsis records a healthcare process from a regional hospital in the Netherlands.

The data was originally recorded by the hospital’s ERP system from the year 2013

to 2015 and was collected and anonymized for a case study by Mannhardt and

Blinde [53].

The healthcare process represents the pathway of sepsis patients through the

hospital from admission to discharge. This process has 16 activities, which can be

grouped into six phases, i.e., registration and triaging, admission or transfer, mea-

surement, giving infusions, discharge, and dealing with returning patients. Each

case in the event log records a patient’s trajectory, and the events contain data

related to the activities performed by the clinical groups in the hospital to care

for the patient. In total, the log records 25 clinical groups (resources). Addition-

ally, the log also includes 25 case attributes sourced from the triage documents,

which contain checklists filled in for patients when they were admitted to the hos-

pital. Several business questions were identified and investigated, regarding (i) the

conformance to medical guidelines for the treatment of sepsis, (ii) the analysis

of specific patient trajectories, e.g., admission to normal care and admission to

intensive care, and (iii) trajectories of patients returning within 28 days. More

details can be found in the data description [52] and the article reporting the case

study [53].

We derived two additional attributes based on the original data and its descrip-

tion. A case attribute “case:returning” takes Boolean values indicating whether a

patient is a returning patient. An event attribute “phase” takes categorical values

showing the phase of the process activity recorded by an event.



60

WABO Receipt Phase Log [18]

Log wabo records the receipt phase of a building permit process performed in a

municipality from 2010 to 2012. The data was collected as part of the Configurable

Services for Local Governments (CoSeLoG) research project and was reported in

the doctoral thesis of Buijs [17].

The process consists of 27 activities, mainly concerned with the municipality

handling documents relevant to the receipt of building permits, e.g., creating,

checking, and adjusting documents. The event log records 1434 cases of the process

that involved a total of 48 individual workers performing the process activities.

Several case attributes are recorded. However, only a limited number of them have

metadata available. This is likely due to the fact that the original research [17]

focused on the control-flow perspective of the process and did not report on the

use of those attributes.

4.4.2 Experiment Setup

The purpose of the experiments is two-fold: (i) to test the feasibility of our ap-

proach in solving the problem of learning execution contexts, and (ii) to compare

the effectiveness and efficiency of the decision-tree-based and the SA-based method.

To this end, we need to preprocess the original event logs before applying the

proposed approach. This includes specifying type-defining attributes for the three

core process dimensions (case, activity, and time) and applying suitable filters to

select relevant data.

Specifying type-defining attributes We referred to metadata in the dataset

descriptions to determine if an attribute is related to any possible definition of

types on the core process execution dimensions. When there is not a suitable

attribute for a dimension, we applied the following default setting: For the activity

dimension, we used the activity label. Note that it can be a type-defining attribute

by itself as per Definition 4.1. For the time dimension, we derived “month” and

“weekday” from the date component of the original timestamps. In the following,

we explain the type-defining attribute selection for each dataset.

• bpic15: For case types, we used two attributes. Attribute “case:Responsible

actor” is the identity of the responsible resource, and “case:parts Bouw” is a

derived attribute indicating whether a case is relevant to construction. For

activity types, we used the “subprocess” and “phase” attributes derived.

• bpic17: For case types, we used two attributes — “case:Loan Goal” records

the reason used by customers when applying for the loan; “case:Application

Type” records the type of application, e.g., if it is applying for a “New credit”

or “Limit raise”.



61

• bpic18: For case types, we used 37 attributes. Attribute “case:department”

records the department handling the case. There are three case attributes

indicating the application type, i.e., whether it is an application for redis-

tributive payment, the small farmer scheme, or the young farmer scheme.

Furthermore, there are 30 Boolean attributes indicating the types of penal-

ties. Lastly, there are two case attributes indicating whether the case was

selected for inspection and one attribute “case:rejection” indicating whether

the case was entirely rejected. For activity types, we used attribute “doc-

type” (document type) and the attribute indicating the state of a document.

• sepsis: For case types, we used 12 case attributes, among those 11 are related

to the type of clinical tests ordered for the patients. The names of these

attributes all start with a prefix “Diagnostic”, e.g., “DiagnosticBlood” is a

selected attribute indicating whether a blood test was ordered. The other

one is related to whether a patient is a returning patient (i.e., the derived

attribute “case:returning”).

• wabo: For case types, we used two attributes: “case:channel” represents

the five communication channels used by the customers when applying for

permits, and “case:department” suggests the expertise demanded to handle

the permit (which can be “General”, “Expert”, or “Customer contact”).

Filtering relevant data With the selected type-defining attributes, we first fil-

ter out cases and events that record a null value for any type-defining attribute.

Also, we neglect meaningless resource identifiers, such as “?”, “test”, “n/a”. Specif-

ically, as aforementioned, for bpic17 we used only events that record the completion

of process activity instances, and for bpic18 we focused on events recorded for the

“main” and “application” subprocesses since the start of 2017. As a result, we

obtain the preprocessed event logs. Table 4.2 reports their statistics.

Table 4.2: A summary of the selected event log datasets after preprocessing

Log #cases #events #resources
#type-defining #distinct type-defining

attributes value combinations observed

bpic15 5641 262194 72 6 34969
bpic17 31509 475306 144 5 25904
bpic18 14507 341981 107 41 15221
sepsis 995 13943 25 15 8030
wabo 1434 8570 46 5 1249

Configuring the methods We discuss the configuration applied to compare the

effectiveness of the two proposed methods based on decision tree learning (hereby

referred to as tree-based) and SA (hereby referred to as SA-based).



62

First, we set the SA-basedmethod to use the empty initialization and the widely

adopted exponential cooling schedule with a decreasing rate of 0.95. We set the

initial and the minimum temperature to 20 and 3× 10−4, such that there is a 95%

probability of accepting a worst possible neighboring solution at the beginning

of the search (i.e., with a quality score difference of 1), and a 5% probability of

accepting a neighboring solution of similar quality (i.e., with a score difference

smaller than 10−3). We can therefore calculate the number of total iterations as

217 (i.e.,
⌈
log0.95

(
20/(3× 10−4)

)⌉
). We set the maximum height parameter to the

same number for the tree-based method. Similarly, we set the number of candidate

rules of the tree-based method to 1 and the neighborhood size parameter of the

SA-based method to the number of type-defining attributes specified for the input

log. In summary, the configuration above sets (i) the same initialization, (ii) the

same number of total iterations, and (iii) the same neighborhood size, and thus

ensures a fair comparison between the two methods.

Both the tree-based and the SA-based method involve random sampling when

inducing rules. To avoid arbitrariness in the results, we ran each of the methods

10 times on the same dataset with the same configuration.

In addition, we included a baseline in the comparative evaluation. For an

event log, we construct the baseline execution contexts by enumerating the distinct

combinations of type-defining attribute values observed in the log. For example,

for bpic15, the baseline has 34969 execution contexts with 45 activity types, each

corresponds to a unique “phase” in a “subprocess”. These baselines represent the

results of manually specifying execution contexts without clear prior information

or learning from the discriminative information in the logs.

4.4.3 Evaluation against the Baselines

We obtained a total of 100 solutions in the experiments (10 solutions per method

per dataset). The full evaluation results can be found in Appendix Table A.1.

First, we compared the worst solutions against the baselines to demonstrate the

effectiveness of the proposed methods for learning execution contexts. In the anal-

yses below, we consider the use of type-defining attributes, resultant execution

context size (number of execution contexts), and quality (impurity, dispersal, and

score).

Table 4.3 shows the worst execution contexts learned from the datasets, com-

pared with the baselines. Across all datasets, we can see that the learned execution

contexts are smaller in size. Many of those have less than 5% the size of the base-

lines. These observations, combined with the number of type-defining attributes

used to define types, indicate that the proposed methods were able to pick from

the given type-defining attributes. Furthermore, the categorization rules learned

by the proposed methods were able to group the attribute values. An example is



63

Table 4.3: Comparing the worst solutions produced by the proposed learning ex-
ecution contexts methods and the baselines

Log Method
Use of TD attributes1

Size2
Quality

case activity time impurity dispersal score

bpic15 baseline 2 2 2 34969 0.154 0.827 0.287
tree-based 2 2 1 1255 (-96%) 0.378 0.476 0.569 (+98%)
SA-based 1 2 1 794 (-98%) 0.421 0.426 0.577 (+101%)

bpic17 baseline 2 1 2 25904 0.508 0.870 0.206
tree-based 2 1 1 674 (-97%) 0.686 0.600 0.352 (+71%)
SA-based 2 1 2 6607 (-74%) 0.701 0.669 0.314 (+53%)

bpic18 baseline 37 2 2 15221 0.064 0.689 0.467
tree-based 4 2 1 228 (-99%) 0.237 0.334 0.712 (+52%)
SA-based 5 2 2 311 (-98%) 0.275 0.218 0.752 (+61%)

sepsis baseline 12 1 2 8030 0.033 0.820 0.304
tree-based 6 1 1 360 (-96%) 0.157 0.552 0.585 (+93%)
SA-based 1 1 0 15 (-99%) 0.286 0.080 0.804 (+165%)

wabo baseline 2 1 2 1249 0.490 0.655 0.411
tree-based 2 1 2 578 (-54%) 0.569 0.549 0.440 (+7%)
SA-based 1 1 2 648 (-48%) 0.566 0.567 0.433 (+5%)

1 Number of type-defining attributes used to define execution contexts (per process dimension)
2 Number of execution contexts

bpic17: the baseline and the SA-based results have the same number of attributes

used, yet the latter has a smaller size due to the grouping of attribute values to

define rules.

In the meantime, the learned execution contexts — even when they are the

worst solutions — still achieved improved quality compared to the baselines. Note

that the learned execution contexts are expected to have a higher impurity. This

is because the baselines correspond to the most fine-grained set of execution con-

texts, and hence events in an execution context are less likely to be originated

by various resources. On the contrary, the learned execution contexts have much

lower dispersal due to the reduced use of type-defining attributes to capture re-

source specialization. This contributes to the better overall quality of the learned

execution contexts, as indicated by the quality score. Specifically, the results from

log wabo are less promising, which may be due to resources in the corresponding

building permit process being more generalized [91].

4.4.4 Evaluation between tree-based and SA-based

We now proceed to a detailed comparison between tree-based and SA-based. For

each dataset, we compare the size (number of execution contexts) and quality of

the 10 solutions generated by applying each method.

Figure 4.3 shows the comparison of solution size based on the number of ex-

ecution contexts. We observe that the SA-based method produced smaller-sized

solutions, which means the resultant execution contexts should be simpler.

Figure 4.4 illustrates the comparison of solution quality. In terms of impurity



64

0

500

1000

1500

2000

2500

#e
xe

cu
tio

n 
co

nt
ex

ts
log = bpic15

1000

2000

3000

4000

5000

6000

log = bpic17

50

100

150

200

250

300

350

log = bpic18

0

100

200

300

log = sepsis

300

400

500

600

700

log = wabo

tree-based SA-based

Figure 4.3: Comparing the two proposed methods in terms of the size (number
of execution contexts) of the 10 solutions generated by applying each method per
dataset

0.36

0.38

0.40

0.42

0.44

0.46

im
pu

rit
y

log = bpic15

0.58

0.60

0.62

0.64

0.66

0.68

0.70
log = bpic17

0.225

0.250

0.275

0.300

0.325

0.350

log = bpic18

0.175

0.200

0.225

0.250

0.275

log = sepsis

0.56

0.57

0.58

0.59

0.60
log = wabo

tree-based SA-based

(a) execution contexts impurity (the lower the better)

0.25

0.30

0.35

0.40

0.45

di
sp

er
sa

l

log = bpic15

0.50

0.55

0.60

0.65

log = bpic17

0.05

0.10

0.15

0.20

0.25

0.30

0.35
log = bpic18

0.0

0.1

0.2

0.3

0.4

0.5

log = sepsis

0.45

0.50

0.55

log = wabo

(b) execution contexts dispersal (the lower the better)

0.58

0.60

0.62

0.64

0.66

sc
or

e

log = bpic15

0.32

0.34

0.36

0.38

0.40

0.42

log = bpic17

0.725

0.750

0.775

0.800

0.825

0.850
log = bpic18

0.6

0.7

0.8

0.9
log = sepsis

0.44

0.45

0.46

0.47

log = wabo

(c) execution contexts quality score (the higher the better)

Figure 4.4: Comparing the two proposed methods in terms of the quality of the
10 solutions generated by applying each method per dataset

(Figure 4.4a), the two methods seem comparable — in bpic15 and wabo, tree-

based solutions are better (with lower impurity); in bpic17 and bpic18, SA-based

outperformed tree-based; in sepsis, the results are similar. In the meantime, observe



65

300

400

500

600

700

800

#execution contexts

0.56

0.58

0.60

impurity

0.40

0.45

0.50

0.55

0.60
dispersal

0.43

0.44

0.45

0.46

0.47

0.48

score

SA-based with 217 iterations
( =0.95)

SA-based with 2216 iterations
( =0.995)

Figure 4.5: Comparing the solutions obtained by using different numbers of total
iterations when applying SA-based on log wabo (additional experiment)

that the SA-based solutions usually have lower dispersal (see Figure 4.4b). This,

combined with our previous observation about solution size, shows that using

SA-based produces execution contexts capable of capturing resource specialization

more compactly, compared to tree-based. The reason is that the SA-based method

is designed to avoid inducing rules in a sequential forward manner as the tree-

based method does. With both the split and merge operators, SA-based can avoid

solutions that contain overly fine-grained partitions.

In terms of the overall quality score, we can see that the SA-based method can

produce solutions with higher (bpic17, bpic18, and sepsis) or at least comparable

quality (bpic15 and wabo).

An observation across different datasets and measures is that the SA-based

method is less stable than the tree-basedmethod, as implied by the larger interquar-

tile ranges. A possible reason is that the SA-based method explores the solution

space more extensively and is therefore more likely to follow various search paths

across different runs. Consequently, the final solutions tend to vary, especially

when the temperature decreases overly fast and the number of total iterations is

not sufficient. To verify this conjecture, we conducted an additional experiment on

log wabo, running SA-based 100 times with different temperature decreasing rates

(α): 0.95 vs. 0.995. The former was used in the original configuration, resulting in

217 total iterations; the latter is a slower cooling schedule, resulting in 2216 total

iterations. Figure 4.5 shows the comparison of the 200 solutions regarding their

size and quality. Note that with the slower cooling schedule — and thus more

iterations — the results are more stable. They are also generally better in terms

of having a smaller size and higher quality.

We also wish to understand how tree-based and SA-based compare with regard

to their efficiency in obtaining quality solutions. To this end, we looked at the

relationship between the score of intermediate solutions and the search iterations.

Figure 4.6 illustrates the results. For tree-based and SA-based, we calculated the

mean score of the solutions obtained per iteration across the 10 runs. We also



66

0 50 100 150 200
0.0

0.1

0.2

0.3

0.4

0.5

0.6

m
ea

n 
sc

or
e

log = bpic15

0 50 100 150 200
0.0

0.1

0.2

0.3

0.4
log = bpic17

0 50 100 150 200
iteration

0.0

0.2

0.4

0.6

0.8
log = bpic18

tree-based SA-based baseline

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

log = sepsis

0 50 100 150 200
0.0

0.1

0.2

0.3

0.4

log = wabo

Figure 4.6: Comparing the two proposed methods in terms of the mean score of
solutions obtained per iteration

0

2000

4000

6000

CP
U 

tim
e 

(s
ec

on
ds

)

log = bpic15

0

20000

40000

60000

80000

log = bpic17

0

10000

20000

30000

40000

log = bpic18

0

1000

2000

3000

4000

5000

6000
log = sepsis

0

200

400

600

log = wabo

tree-based SA-based

Figure 4.7: Comparing the two proposed methods in terms of efficiency, measured
by CPU time in seconds

included the score of the baseline execution contexts for comparison. Note that

tree-based can obtain solutions better than the baseline within the first 50 iter-

ations. SA-based requires more iterations to reach the baseline (within 100 iter-

ations on bpic17 and 150 on wabo), due to its probabilistic acceptance of worse

solutions, especially at the early phase (when the system temperature is high).

However, observe that tree-based is quickly trapped in local optima on all datasets

(the solution score remains unchanged after the first 100 iterations) while SA-based

explores better-quality solutions. This is aligned with our expectations in terms

of the design of the two methods.

Last but not least, we compared the efficiency of the two proposed methods

based on the CPU time consumed to obtain the final solutions. Figure 4.7 illus-

trates the results. In general, the SA-based method requires more time to finish,

particularly when solving problems that have a larger neighborhood to explore,

i.e., bpic18 with 41 type-defining attributes and sepsis with 15. The larger neigh-

borhood causes SA-based to stay at the same temperature for a longer period.

Therefore, when the system temperature is high, the search has an increased pos-

sibility to explore worse solutions far from the initial solution. Note that in these

experiments we chose to use empty initialization (i.e., starting a single execution

context), which means those distant solutions are likely to correspond to larger



67

sets of execution contexts — and our previous analysis of the time complexity of

the algorithm (Section 4.3) has shown that the evaluation of such solutions is more

costly. By comparison, the greedy tree-based method tends to stay within a rela-

tively restricted part of the solution space — in this experiment, a subspace close

to the initial, empty solution — and prevents itself from evaluating large-sized but

worse solutions. Nevertheless, the longer time required by SA-based is a tradeoff for

extensively exploring the solution space and increasing the possibility of obtaining

better final solutions. As shown in (Figure 4.6), the final solutions produced by

applying SA-based have higher quality scores compared to the tree-based ones.

4.4.5 Summary

Through the experiments above, we evaluated our approach to solving the prob-

lem of learning execution contexts. Our first goal was to test its feasibility. By

comparing against the baseline execution contexts constructed for each dataset,

we demonstrated that both proposed methods, i.e., tree-based and SA-based, are

capable of utilizing information about the type-defining attributes in the log to

learn compact and high-quality execution contexts. They performed well even

when presented with complex problems with many type-defining attributes, i.e.,

log bpic18 with 41 and sepsis with 15.

Our second goal was to compare the two methods in detail. Our experiment

results showed that the SA-based method outperformed tree-based by producing

simpler execution contexts of better quality. An additional experiment showed that

SA-based outputs could be further improved with more iterations allowed. Further-

more, we compared the efficiency of the two methods. We observed that tree-based

was capable of obtaining relatively good-quality execution contexts usually within

the first few iterations, while SA-based could produce better final outputs at the

cost of time performance. These observations are aligned with our expectations of

the two methods due to the different heuristics they employed.

4.5 Discussion

This chapter focuses on execution context, which is a fundamental notion in the

OrdinoR framework that enables capturing the involvement of resource groups

and their members in process execution. We introduced the problem of learning

execution contexts from event logs and proposed to measure the quality of exe-

cution contexts based on how well they characterize resource specialization. We

formulated the learning problem as utilizing event attributes to derive a set of

so-called categorization rules that have maximized quality. Then, we proposed an

approach based on decision tree learning and simulated annealing, respectively,

to address the problem. We conducted experiments using five real-world event



68

datasets. Based on our findings, we concluded that our approach is feasible for

solving the problem. While the decision-tree-based and the simulated-annealing-

based methods are both effective, the former runs more efficiently and the latter

is capable of learning higher-quality execution contexts.

Our solution addresses the first task in the discovery of organizational models

(Section 3.4) and contributes to investigating RQ1.1. Given the essential role

of execution contexts in the organizational models in the OrdinoR framework,

this solution also contributes to better utilization of event log information for

representing resource group involvement (relevant to RQ1.3). In the meantime,

note that having execution contexts is a prerequisite for the evaluation and analysis

of organizational models. Hence, the solution introduced in this chapter is a key

enabler of the overall organizational model mining approach (Figure 1.2) proposed

in the thesis.

Beyond the scope of this research, learning execution contexts also contributes

to other resource-oriented process mining topics focused on comparing resources

and analyzing them along with other process dimensions, e.g., profiling resource

behavior with regard to specific cases [58]. Since the learned execution contexts

can be applied to select sub-logs to analyze process variants concerned with certain

resources, our study also has potential contributions to the research on deriving

process cube views in multidimensional process mining research [77, 12].

Our work has some limitations to be addressed in future work. From an input

data perspective, further research is needed to investigate how event attributes

with non-discrete values may be used directly as type-defining attributes, without

having to be preprocessed. Those event attributes can be, for example, interdepen-

dent, continuous attributes that may not be discretized separately; or attributes

that record key information used for decision-making during process execution but

in the form of free-text. Dedicated solutions to the handling of such non-discrete

attributes will enable application of the proposed approach on a broader range of

event logs.

From an approach design perspective, it is worthwhile to consider impurity

and dispersal as two separate optimization objectives instead of using a combined

quality score. In that case, the proposed approach needs to return multiple sets

of Pareto-optimal execution contexts — some with better impurity and others

with better dispersal — and users can then select the desired one as the final

solution. This way, we will be able to build a more “human-in-the-loop” approach

that further incorporates user knowledge beyond what can be captured by input

attribute specifications.

Another aspect to consider is to evaluate intermediate rules more efficiently

in the iterative search. Note that this is currently done by directly computing

impurity and dispersal. A more efficient way could be to minimize impurity and



69

dispersal without incurring time complexity that is quadratic to the number of

execution contexts. Devising such an efficient heuristic will contribute significantly

to the application of the approach to large event logs.

For the simulated-annealing-based method, its configuration remains under-

explored. With fine-tuned parameters and cooling schedules, this method could

potentially be improved in terms of both output quality and efficiency. The issue

can be investigated through multiple experiments on the same input dataset.





71

Chapter 5

Discovering Organizational

Models

In the OrdinoR framework for organizational model mining, we outlined three

tasks to be addressed in discovering organizational models from an event log (Sec-

tion 3.4). Those are: (i) determining execution contexts based on the input log,

(ii) determining resource grouping, i.e., groups of resources sharing similar behav-

ior, and (iii) determining how to link execution contexts to resource groups to

describe their involvement in process execution. Chapter 4 is devoted to solving

the first task. This chapter introduces a systematic approach to discovering organi-

zational models, covering all three tasks. We will look into the concrete challenges

and discuss alternative methods for addressing them. We will also explain what

and how user knowledge assists in configuring those methods.

This chapter is based on work published in [94].

5.1 Approach

Figure 5.1 shows an overview of the approach to discovering organizational mod-

els from event logs. First, an event log with the standard attributes (case, act,

time) and resource information (res) is used as input to determine a set of execu-

tion contexts. Using that, a resource-event log can then be derived and utilized

for discovering resource groups, which includes characterizing the features of re-

sources and clustering them into groups. Next, the discovered resource groups

are “profiled” using information from the derived resource log to describe their

group capabilities in process execution. As a result, an organizational model is

constructed. Note that user knowledge plays an important role in configuring

the methods in model discovery. Finally, discovered models can be evaluated and

analyzed by applying the measures in the framework (Sections 3.5 and 3.6).



72

Discover models

Determine
execution contexts

resource-event 
log

Profile
resource groups

resource 
groups

organizational 
model

Evaluate discovered models

Analyze discovered models

user knowledge

event log

research questionsresearch questions

domain knowledge 
about the log and process
domain knowledge 
about the log and process

Discover resource grouping

Characterize 
resource features

Group resources 
by features

Figure 5.1: An overview of the approach to the discovery of organizational models
from event logs

5.1.1 Determining Execution Contexts

There are two ways to determine execution contexts for a given event log — by

directly specifying the types of case, activity, and time, or by applying a learning

method to derive execution contexts from the log.

Direct type specification requires users to manually define both the names of

types and how each type name corresponds to a category of cases, activity labels,

or timestamps. A user, e.g., a process analyst or HR manager, may decide on type

definitions using prior information about an event log and the recorded process

and employees. Prior information can be questions that guide the current analysis

and be based on domain knowledge about the process. For example, a process

analyst is tasked to compare resources’ performance by the types of customers

they serve (analysis questions). In doing so, the process analyst is suggested by

business experts that the process is designed to have a dedicated set of activities

for handling high-end customers (domain knowledge). In this case, the process

analyst may define case types by the customer types and define activity types by

recognizing those specific activities.

When prior information is limited or unclear, some process mining techniques



73

can be applied to help users decide on type specification. For example, trace

clustering techniques (e.g., [67, 14]) are useful in finding coherent sets of cases,

and behavioral patterns mining techniques (e.g., [74, 6]) can discover subsets of

process activities representing frequent patterns in execution. These results may

be utilized for directly deciding case types and activity types, or they can serve as

knowledge in addition to the prior information.

Learning execution contexts from event logs provides an alternative means of

determining execution contexts when direct type specification is not immediately

applicable due to the lack of sufficiently concrete prior information. In Chapter 4,

we formalized the learning execution contexts problem and introduced a solution

that derives high-quality execution contexts from an event log, requiring minimal

user domain knowledge as input. Compared to directly specifying types, learning

execution contexts can exploit patterns embedded in event log data while still

supporting the use of prior information about the categorization of cases, activity

labels, and time.

5.1.2 Discovering Resource Grouping

Once a set of execution contexts is determined, an input event log is then trans-

formed into a resource-event log (see Definitions 3.6 and 3.7), which is a sample

describing resource behavior in process execution. Discovering resource grouping

is concerned with how to use a resource-event log to identify groups of resources

sharing similarities in their behavior.

To this end, the first step is to characterize resource features. Note that orga-

nizational models discovered from an event log should be descriptive of the reality

as recorded in the log. Hence, we characterize resource features by a resource-by-

execution-context matrix, which captures the variety and frequency of execution

contexts in which resources performed work.

Given a resource-event log derived from an event log, a resource-by-execution-

context matrix can be constructed using the number of occurrences of resource

events. Table 5.1 shows a matrix that characterizes the features of the six resources

in the example derived resource-event log (Table 3.2). Each row corresponds to

a resource and each column corresponds to an execution context. A resource-by-

execution-context matrix in practice usually has more rows and columns due to

the larger numbers of events, event attributes, and resources recorded in real-life

event logs.

Note that users may choose to configure a constructed resource-by-execution-

context matrix to focus on dedicated resource features. This can be done by

• Context selection: Users may want to analyze specific execution contexts by

the types of cases, activities, and times. Columns related to other execution

contexts can thus be discarded; and



74

Table 5.1: An example resource-by-execution-context matrix related to the exam-
ple resource-event log in Table 3.2

resource
(normal, (normal, (normal, (normal, (VIP, (VIP, (VIP,
register, contact, check, decide, register, check, decide

afternoon) afternoon) morning) morning) morning) afternoon) afternoon)

Ann 0 1 0 0 0 0 0
Bob 0 0 0 0 1 0 0
John 0 0 1 1 0 0 0
Mary 0 0 0 0 0 1 1
Pete 3 0 0 0 0 0 0
Sue 0 0 1 1 0 0 0

• Normalization: In some settings, users may want to exclude the workload

difference across resources (e.g., considering full-time and part-time employ-

ees together [79, 68]). Or, they may want to omit the frequency difference

across execution contexts, for example, there were more cases handled for

normal customers compared to VIPs. To achieve these, matrix entries may

be normalized by row sums (to exclude the difference across resources) and

column sums (to omit the difference across execution contexts), respectively.

For instance, Table 5.2 shows the example resource-by-execution-context ma-

trix configured for analyzing only the “VIP” cases and the one configured for

excluding resource workload difference.

Table 5.2: Applying context selection to analyze only the “VIP” cases (left) and
normalization by row sums to exclude workload difference (right) to the example
resource-by-execution-context matrix in Table 5.1

resource
(VIP, (VIP, (VIP,

register, check, decide
morning) afternoon) afternoon)

Ann 0 0 0
Bob 1 0 0
John 0 0 0
Mary 0 1 1
Pete 0 0 0
Sue 0 0 0

resource (execution contexts omitted for brevity)

Ann 0 100% 0 0 0 0 0
Bob 0 0 0 0 100% 0 0
John 0 0 50% 50% 0 0 0
Mary 0 0 0 0 0 50% 50%
Pete 100% 0 0 0 0 0 0
Sue 0 0 50% 50% 0 0 0

With a resource-by-execution-context matrix, we can address the task of iden-

tifying similar resources by applying established cluster analysis techniques in data

mining. Agglomerative Hierarchical Clustering (AHC) [88] and KMeans [50, 8] are

some of the classic algorithms, which generate disjoint clusters. More often than

not, resource grouping in real-life organizations involves overlaps, i.e., resources

may belong to more than one group. Hence, overlapping clustering (a.k.a. “soft

clustering”) techniques such as Model-based Overlapping Clustering (MOC) [9]

and Gaussian Mixture Models (GMM) [32] can be applied to find potentially over-

lapping groups [91].



75

Most cluster analysis techniques require deciding the expected number of clus-

ters. This is specified by users, indicating the number of potential resource groups

they desire to discover from the log (e.g., a group number suggested by domain

knowledge). Alternatively, users may have several candidates for the group num-

ber — in this case, silhouette score and cross-validation [60, 32] can be applied to

help decide on the number of clusters.

5.1.3 Profiling Resource Groups

The final task is to profile each discovered resource group with a set of relevant

execution contexts characterizing the group’s capabilities in process execution.

We first consider a method, namely FullRecall, which accounts for all historical

behavior by any member of a resource group. Given a derived resource-event log

RL(EL,CO), the set of execution contexts for profiling a group rg is

cap(rg) =
{
co ∈ CO

∣∣ ∃r∈mem(rg)(r , co) ∈ RL(EL,CO)
}
. (5.1)

Applying this definition, a resulting organizational model will capture all observed

behavior recorded in the log and will thus achieve the best fitness. However, the use

of FullRecall risks linking a resource group with an excessive number of execution

contexts. This is because FullRecall considers every resource event related to any

group member, even if that event may represent rare behavior.

Hence, we introduce another method OverallScore that ranks execution contexts

according to how frequent and how popular they are with respect to the members

of a resource group. If the process activities within an execution context were

mostly taken by a specific group, or by the majority of members in a group, then

this execution context is likely associated with the group.

OverallScore can be formalized as selecting execution contexts based on the

weighted average of two model analysis measures, group relative stake (Defini-

tion 3.14) and group coverage (Definition 3.15), i.e.,

cap(rg) = { co ∈ CO | ω1 · RelStake(rg , co) + ω2 · Cov(rg , co) ≥ θ } , (5.2)

where θ is a threshold in the range (0, 1), and ω1, ω2 are non-negative weights

satisfying ω1 + ω2 = 1. These parameters can be set by users based on whether

the main characteristic of group capabilities is reflected by relative stake (i.e., the

group was the major participant) or coverage (i.e., most of the group members

were involved).

Alternatively, users may perform a grid search to test multiple parameter set-

tings and pick the one that produces a model with high quality based on fitness

and precision (Section 3.5) — this model can then be selected as the discovery out-

put. Compared to FullRecall, applying OverallScore links a resource group to only



76

its most relevant execution contexts. This way, it leads to discovered models with

relatively balanced fitness and precision, i.e., capturing most observed behavior in

a log without allowing much excessive behavior.

Table 5.3 presents an example of profiling a group of three resources, using

the two methods, respectively. Note that applying OverallScore excludes execution

context “(normal, contact, afternoon)”, which has low group coverage and thus an

overall score lower than the given threshold.

Table 5.3: An example of profiling a resource group of three resources, applying
FullRecall and OverallScore (setting weights ω1 = ω2 = 0.5 and threshold θ = 0.8)

mem(rg)
cap(rg) cap(rg)

(applying FullRecall) (applying OverallScore)

Ann, John, Sue
(normal, contact, afternoon)
(normal, check, morning) (normal, check, morning)
(normal, decide, morning) (normal, decide, morning)

5.2 Implementation

We developed an open-source software tool implementing the approach. It consists

of (i) an extensible Python library6 and (ii) a prototype web-based application,

enabling users to perform organizational model mining tasks and visualize the

outcomes. Figure 5.2 shows a screenshot of the prototype web application.

The tool has a modular design, following the proposed OrdinoR framework

(Chapter 3). Several methods discussed in the previous sections have been imple-

mented in the tool, as well as the proposed measures for evaluating and analyzing

organizational models using event logs. The modular design of the tool also allows

for extensions that introduce new methods and measures for organizational model

mining in the future.

5.3 Evaluation

We conducted experiments on real-life event logs to demonstrate how to apply the

proposed approach to discover organizational models using different alternative

methods and how those methods compare. Furthermore, we show how to evaluate

and analyze those discovered models using measures in the OrdinoR framework.

6 The OrdinoR library: https://royjy.me/to/ordinor

https://royjy.me/to/ordinor


77

1

2

3

4

Figure 5.2: An annotated screenshot of the software tool implementing the ap-
proach: (1) the visualization of a discovered organizational model; (2) the model’s
quality, measured by fitness, precision, and F1-score; (3) model analysis measures,
along with some other descriptive statistics; (4) a Directly-Follows Graph repre-
senting the process model of the cases of the selected case type (“CT.Desk”), in
which the red activities correspond to the activity types linked with the selected
group (“Group 1”)

5.3.1 Experiment Setup

Selecting datasets The same collection of event logs introduced in Chapter 4

was used for the experiments here. Note that we utilized the preprocessed logs in

order to incorporate the learning execution contexts outputs. For details on the

experiment datasets, refer to Section 4.4.1.

Configuring the methods Each of the three tasks in the model discovery ap-

proach can be addressed by alternative methods. In the experiments, we tested

all combinations of these alternatives. Figure 5.3 depicts an overview of the ex-

periment setup. Given an input event log, an organizational model is discovered

by applying a combination of methods for each task and is then evaluated and

analyzed.

Three alternative methods for determining execution contexts were tested.

ATonly represents the method used by the majority of the organizational model

mining literature, which considers only the process activities. This is equivalent to

directly specifying the activity types by distinct activity names to construct execu-

tion contexts, with only a single case type and time type for all events. The other



78

AHC

MOC

FullRecall

Apply 
model evaluation 

measures to assess 
model quality

OverallScore

Apply 
model analysis 

measures to 
diagnose model

bpic15bpic15

bpic17bpic17

bpic18bpic18

sepsissepsis

wabowabo

ATonly
(direct 

specification)

tree-based
(learning 
from log)

SA-based
(learning 
from log)

input event logs

determining 
execution contexts

discovering 
resource grouping

profiling
resource groups

Figure 5.3: An overview of the experiment setup: each path in the graph specifies
a unique combination of methods for the three tasks. In total, there are 12 possible
combinations of methods for discovering organizational models from an input event
log

two are methods we developed for learning execution contexts, i.e., the tree-based

method and the SA-based method (Section 4.3). To test them, we included the

highest-quality execution contexts from the previous experiments (Section 4.4.4).

For discovering resource grouping, our experiments used the default resource-

by-execution-context matrix, i.e., without considering any context selection or

normalization. Two clustering techniques, Agglomerative Hierarchical Clustering

(AHC) [88] and Model-based Overlapping Clustering (MOC) [9], were then applied

to identify the resource groups. For their configuration, the Euclidean distance

was selected as the proximity measure; the number of resource groups (clusters)

was decided using cross-validation, in which the potential group number was tested

between 2 and 10. Note that our experiments did not aim to investigate how an

array of clustering techniques may perform on the discovery of resource grouping,

hence the selected techniques were limited to the ones applied in the literature of

organizational model mining [68, 91].

For profiling resource groups, method FullRecall requires no specific configura-

tion. For OverallScore, we performed a grid search with a search step of 0.1 in the

range [0.1, 0.9] to determine the weights (ω1, ω2) and the threshold (θ).

5.3.2 Model Evaluation and Comparison

We discovered and evaluated a total of 60 organizational models (12 per event

log). We compared models discovered from the same event log to investigate the

impact of different model discovery methods on model quality. The baseline models



79

Table 5.4: Discovered models with the best quality, used as baselines in the com-
parisons

Log Configuration
Model size Model quality

#execution #resource
f. p. F1

contexts groups

bpic15 SA-based AHC OS 145 10 0.900 0.783 0.838
bpic17 SA-based AHC OS 2038 10 0.892 0.617 0.729
bpic18 SA-based AHC OS 62 10 0.978 0.938 0.957
sepsis tree-based AHC OS 26 10 0.994 0.951 0.972
wabo tree-based AHC OS 593 9 0.831 0.649 0.729

Configuration: OS = OverallScore
Model evaluation: f. = Fitness, p. = Precision, F1 = F1-score

used in the comparisons were the ones with the best quality, i.e., with the highest

F1-score of model fitness and precision. Table 5.4 shows their size and quality.

We selected three subsets of organizational models for comparison against the

baseline models. This selection corresponds to the three tasks in the model dis-

covery approach. Note that each subset contains models discovered using different

methods for one task, while for the other tasks the applied methods align with

the corresponding baseline models. In the following, Table 5.5 reports the results

of varying the methods for determining execution contexts; Table 5.6 reports the

results of varying the methods for discovering resource grouping; and Table 5.7

reports the results of varying the methods for profiling resource groups. To aid

the comparison, the results of the baseline models are underlined in these tables.

For the full results of evaluating all 60 discovered models, refer to the Appendix

Table A.2.

Determining execution contexts (Table 5.5) Applying the tree-based or SA-

based method produced models with the best quality and outperformed ATonly in

general, especially in terms of model precision. This is because ATonly considers

only the activity dimension, neglecting log information about different resource

characteristics with regard to cases and times. Hence, the resultant models are

less descriptive of the actual process execution and have lower quality. Models

generated from applying tree-based and SA-based have comparable quality. Note

that the SA-based models are simpler as they include fewer execution contexts —

it may be more desirable to use these models, especially when sufficient time is

allowed to tune and apply SA-based to determine execution contexts. This con-

forms to our conclusions from the previous experiment (Section 4.4.4) comparing

the two methods.

Discovering resource groups (Table 5.6) The evaluation results show that

AHC outperformed MOC, producing models with both higher fitness and precision.

A possible reason is that the MOC-generated clusters are larger and have lower



80

Table 5.5: Comparing models discovered by applying ATonly, tree-based, and SA-
based to determine execution contexts, respectively

Log Configuration
Model size Model quality

#execution #resource
f. p. F1

contexts groups

bpic15 ATonly AHC OS 495 10 0.857 0.601 0.706
bpic15 tree-based AHC OS 571 10 0.901 0.756 0.822
bpic15 SA-based AHC OS 145 10 0.900 0.783 0.838

bpic17 ATonly AHC OS 24 10 0.804 0.598 0.686
bpic17 tree-based AHC OS 3050 10 0.836 0.579 0.684
bpic17 SA-based AHC OS 2038 10 0.892 0.617 0.729

bpic18 ATonly AHC OS 18 10 0.950 0.924 0.937
bpic18 tree-based AHC OS 108 9 0.989 0.909 0.947
bpic18 SA-based AHC OS 62 10 0.978 0.938 0.957

sepsis ATonly AHC OS 15 10 0.999 0.928 0.963
sepsis tree-based AHC OS 26 10 0.994 0.951 0.972
sepsis SA-based AHC OS 7 10 0.999 0.928 0.963

wabo ATonly AHC OS 27 10 0.929 0.533 0.677
wabo tree-based AHC OS 593 9 0.831 0.649 0.729
wabo SA-based AHC OS 378 6 0.908 0.581 0.709

Configuration: OS = OverallScore
Model evaluation: f. = Fitness, p. = Precision, F1 = F1-score

Table 5.6: Comparing models discovered by applying AHC and MOC to discover
resource grouping

Log Configuration
Model size Model quality

#execution #resource
f. p. F1

contexts groups

bpic15 SA-based AHC OS 145 10 0.900 0.783 0.838
bpic15 SA-based MOC OS 145 10 0.784 0.773 0.778

bpic17 SA-based AHC OS 2038 10 0.892 0.617 0.729
bpic17 SA-based MOC OS 2038 9 0.793 0.630 0.702

bpic18 SA-based AHC OS 62 10 0.978 0.938 0.957
bpic18 SA-based MOC OS 62 4 0.764 0.820 0.791

sepsis tree-based AHC OS 26 10 0.994 0.951 0.972
sepsis tree-based MOC OS 26 10 0.977 0.929 0.952

wabo tree-based AHC OS 593 9 0.831 0.649 0.729
wabo tree-based MOC OS 593 10 0.754 0.611 0.675

Configuration: OS = OverallScore
Model evaluation: f. = Fitness, p. = Precision, F1 = F1-score

cohesion [72], i.e., data objects within the same cluster are more dissimilar, due

to allowing overlaps between clusters. As shown in Figure 5.4, points representing

clusters in the MOC models are generally located to the right and on top of those

representing clusters in the AHC models, which indicates the larger cluster size

and within-cluster distance. The poorer quality of the MOC clustering affects

the subsequent task using OverallScore to profile the discovered resource groups



81

(clusters), resulting in low-quality discovered models. We explain this below.

0 20 40 60
cluster size

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d
wi

th
in

-c
lu

st
er

 d
ist

an
ce

log = bpic15

0 20 40 60 80
cluster size

0.00

0.02

0.04

0.06

0.08

0.10

log = bpic17

clusters (groups) in the organizational models
AHC-generated MOC-generated

0 25 50 75 100
cluster size

0.0

0.2

0.4

0.6

0.8

1.0
log = bpic18

0 5 10 15 20
cluster size

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

no
rm

al
ize

d
wi

th
in

-c
lu

st
er

 d
ist

an
ce

log = sepsis

0 10 20 30
cluster size

0.00

0.05

0.10

0.15

0.20

0.25

0.30
log = wabo

Figure 5.4: Size and cohesion (measured by normalized within-cluster distance)
of the clusters in the models discovered by applying AHC and MOC (Table 5.6).
Note that higher within-cluster distance (y-axis) implies lower cohesion

The low-quality MOC-generated clusters cause low model fitness. Recall from

Section 5.1.3 that the OverallScore method considers an execution context as a

resource group’s capability if the execution context has sufficient relative group

stake and group coverage. In the case of the MOC-generated clusters, their large

size tends to lower group coverage; their low cohesion implies that resources are

less likely to have contributed to the same execution contexts, which lowers relative

stake. Consequently, fewer execution contexts will be linked with regard to the

resource groups (clusters), which then leads to fewer events fitted by the discovered

organizational models. In the meantime, the overlapped clusters generated by

applying MOC allow resources to be members of multiple groups in the discovered

models. This usually creates excessive candidate resources (see Definition 3.10)

for events and causes lower model precision.

Profiling resource groups (Table 5.7) Using FullRecall resulted in models with

perfect fitness. But this method sacrifices precision, because resource groups are

usually linked with a large number of irrelevant execution contexts. Consequently,



82

Table 5.7: Comparing models discovered by applying FullRecall and OverallScore
to profile resource groups

Log Configuration
Model size Model quality

#execution #resource
f. p. F1

contexts groups

bpic15 SA-based AHC FR 145 10 1.000 0.259 0.411
bpic15 SA-based AHC OS 145 10 0.900 0.783 0.838

bpic17 SA-based AHC FR 2038 10 1.000 0.225 0.367
bpic17 SA-based AHC OS 2038 10 0.892 0.617 0.729

bpic18 SA-based AHC FR 62 10 1.000 0.226 0.369
bpic18 SA-based AHC OS 62 10 0.978 0.938 0.957

sepsis tree-based AHC FR 26 10 1.000 0.928 0.962
sepsis tree-based AHC OS 26 10 0.994 0.951 0.972

wabo tree-based AHC FR 593 9 1.000 0.228 0.372
wabo tree-based AHC OS 593 9 0.831 0.649 0.729

Configuration: FR = FullRecall, OS = OverallScore
Model evaluation: f. = Fitness, p. = Precision, F1 = F1-score

FullRecall model may be too general — resources are allowed to carry out activ-

ities in excessive execution contexts, which is similar to the concept of “flower

models” [78] in process model discovery, i.e., generic models that capture all ob-

servations in the data but are extremely imprecise. On the other hand, the base-

line models (all resulted from applying OverallScore) have better precision while

maintaining moderate fitness, since execution contexts were selectively linked to

resource groups based on frequency and popularity.

Note that it is not necessary that a “flower-model” discovered by applying Full-

Recall has low precision. In the case of log sepsis, both discovered models have

decent precision values over 0.9. In fact, almost all the “flower-models” discovered

from that log applying FullRecall have satisfactory precision (see Appendix Ta-

ble A.2), except one that was generated from applying tree-based-MOC-FullRecall.

Next, we utilized the model analysis measures to further investigate this exception.

5.3.3 Model Diagnosis

The model to be diagnosed was discovered from log sepsis using tree-based-MOC-

FullRecall. It has low quality due to poor precision (precision = 0.104, F1-score

= 0.188). All other 11 models discovered from log sepsis have high quality, with

an average precision of 0.929 and an F1-score of 0.960, leaving the selected model

as an “outlier”. We applied the model analysis measures to reveal the cause.

The perfect fitness and poor precision of the outlier model imply that some

resource groups and execution contexts were inappropriately linked during dis-

covery, causing certain events in the log to have excessive candidate resources

(Definition 3.10). To identify such groups and execution contexts, we applied the



83

group relative stake (Definition 3.14), group coverage (Definition 3.15), and group

member contribution (Definition 3.16) measures. Group relative stake can reveal

the amount of a group’s contribution to an execution context. Group coverage

can show the proportion of group members involved in an execution context, and

group member contribution can then be used to reveal those involved members.

Table 5.8 presents the average values of group relative stake and group coverage for

each group in the outlier model. In addition, to compare the groups, we calculated

their rankings based on those average values.

Table 5.8: Average group relative stake and group coverage of the resource groups
in the outlier model (discovered from sepsis using tree-based-MOC-FullRecall). The
two groups in bold text (“Group 1” and “Group 3”) were pinpointed by the model
diagnosis for detailed analysis. Note that the resource group names were randomly
assigned by the applied clustering technique

resource #group #group average
rank

average
rank

sum of
group capabilities members group relative stake group coverage ranks

Group 1 26 23 0.972 7 0.114 1 8
Group 2 6 1 0.948 6 1.000 8 14
Group 3 6 2 0.116 1 0.500 3 4
Group 4 6 1 1.000 9 1.000 8 17
Group 5 3 1 1.000 9 1.000 8 17
Group 6 3 10 0.576 5 0.733 4 9
Group 7 2 1 0.194 2 1.000 8 10
Group 8 5 9 0.490 4 0.489 2 6
Group 9 3 3 0.343 3 0.889 5 8
Group 10 5 1 1.000 9 1.000 8 17

From the table, it can be observed that “Group 1” is problematic. It includes

23 member resources and was profiled with all 26 execution contexts as group

capabilities. The reason is likely that MOC generated an abnormally large cluster

(including 23 out of the total 25 resources) — which is then profiled with all

execution contexts by FullRecall indiscriminately, causing high group relative stake

but low group coverage.

We confirmed it by examining the distribution of group coverage of all the

execution contexts with regard to “Group 1”. As shown in Figure 5.5, most of

the execution contexts profiled as this group’s capabilities have group coverage

lower than 0.2, i.e., only a small proportion of group members were involved in

these execution contexts. Consequently, all the members are considered candidate

resources for all the execution contexts, which explains the poor precision of the

model.

But, not all problematic parts stand out like “Group 1”. We also investigated

“Group 3” consisting of two resources as another example. This group has the

lowest average group relative stake and group coverage based on the rankings. Ta-

ble 5.9 shows the six execution contexts as the group’s capabilities and their group

relative stake, coverage, and member contribution. All the execution contexts have



84

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
group coverage

0

2

4

6

8

10

12

14

16

Nu
m

be
r o

f
ex

ec
ut

io
n 

co
nt

ex
ts

Figure 5.5: Distribution of group coverage values of all execution contexts with
regard to “Group 1”. Notice that most of the execution contexts have group
coverage lower than 0.2

coverage of just 0.5, indicating that the outlier model over-generalizes execution

contexts specific to a single group member as capabilities of both members. We

can see that the two resources, i.e., “F” and “L”, have different specializations

in terms of activity types — “F” performed the activity type “AT.3” (transfer to

normal care), while “L” performed the others (giving infusions, ER Registration,

and ER Sepsis Triage). This suggests that “F” and “L” could have been placed in

two groups. Instead, the outlier model included them in the same group.

Table 5.9: Capabilities of “Group 3” in the outlier model, measured by group
relative stake, group coverage, and group member contribution per each resource
in the group

execution context
group group member group

relative stake coverage (resource id) member contribution

(CT.0, AT.3, TT.0) 0.208 0.500 F 100%
(CT.0, AT.3, TT.1) 0.180 0.500 F 100%
(CT.0, AT.0, TT.0) 0.102 0.500 L 100%
(CT.0, AT.0, TT.1) 0.050 0.500 L 100%
(CT.0, AT.7, TT.0) 0.099 0.500 L 100%
(CT.0, AT.7, TT.1) 0.059 0.500 L 100%

- CT.0 is case type of which cases are with “no ordered diagnostics for liquor”.
- AT.0 is an activity type of “giving infusions of liquid and antibiotics”;
- AT.3 is an activity type of “admission or transfer to normal care”;
- AT.7 is an activity type for “ER Registration” and “ER Sepsis Triage”.
- TT.0 is a time type of the calendar month January;
- TT.1 corresponds to all other months.

Based on the diagnosis findings above, we created an organizational model

that improves the outlier model by (i) discarding the abnormal “Group 1” and

(ii) splitting the group of “F” and “L” into two singletons, each linked with the



85

execution contexts specific to a resource as group capabilities. Compared to the

original model, the improved one has nearly perfect fitness (0.993) and a much

improved precision (0.924). This result supports our diagnoses about “Group 1”

and “Group 3” being the key problems in the outlier model.

5.3.4 Summary

Through the experiments, we demonstrated that the proposed approach is capa-

ble of discovering organizational models with satisfactory quality. As Table 5.4

displays, the best-quality discovered models achieved F1-scores of at least 0.7,

with two models having F1-scores over 0.9. We also showed that several alterna-

tive methods can be applied to address the three tasks in model discovery and

compared them based on the fitness and precision of the resultant models. The

comparison results provide insights into the selection of techniques, which can

benefit future applications of the discovery approach on other event logs:

1. the tree-based and SA-based learning execution contexts methods proposed

in Chapter 4 are effective for the task of determining execution contexts, and

exploiting multidimensional process information leads to discovering better

quality organizational models;

2. AHC outperforms MOC when applied to discover resource grouping, due to

the fact that MOC — as an overlapping clustering technique — may risk

generating clusters that are over-sized and less cohesive and hence cause a

decrease in model fitness and precision;

3. OverallScore is an effective method, compared to FullRecall, for profiling re-

source groups, as it generates organizational models with balanced fitness

and precision.

The model diagnosis showed how to apply the model analysis measures to un-

cover the problems behind models with unsatisfactory quality. Using those mea-

sures, we were able to pinpoint problems inside the poor-quality model discovered

from log sepsis. We revealed two contributing factors to the model’s low precision:

(i) resource group being too generic (“Group 1”), and (ii) resource group consisting

of dissimilar members (“Group 3”). We also demonstrated that the model analy-

sis outcomes are useful in “repairing” a problematic organizational model having

those issues.

5.4 Discussion

This chapter introduces an end-to-end approach to the discovery of organizational

models from event logs, addressing the three tasks outlined in the OrdinoR frame-

work. Execution contexts can be determined by directly specifying the types based



86

on prior information about event logs and processes; or they can be learned from

event logs by using the approach proposed in Chapter 4. Resource grouping is iden-

tified by first constructing a resource-by-execution-context matrix to characterize

resource features and then applying conventional clustering techniques. Lastly,

execution contexts are linked with resource groups as their capabilities, based on

either recalling all execution contexts that the group members were involved in or

selecting the ones that are sufficiently relevant to the group members. We evalu-

ated our approach through experiments on the same collection of real-world event

logs used in Chapter 4. In the first part of the experiments, we validated the effec-

tiveness of the proposed approach and analyzed how applying different techniques

impacts the discovered models’ quality. In the second part of the experiments, we

demonstrated the usefulness of the model analysis measures in enabling a detailed

diagnosis of low-quality organizational models.

The proposed approach contributes a realization of the OrdinoR framework

and shows the application of various techniques. It offers a solution for discovering

organizational models from event logs (addressing RQ1.1). In the meantime, the

experiments highlight the value of model evaluation and model analysis in the

framework. First, the experiments can be viewed as a validation of the proposed

model evaluation and analysis measures and hence contribute to addressing RQ1.2.

Second, the experiment results showed that using fitness and precision can provide

a basis for objectively and independently assessing model quality, while the use of

model analysis measures contributes a way to explain the model evaluation results.

Together, they fill the gaps identified in the state-of-the-art of organizational model

mining.

Future work may extend the model discovery approach by introducing a wider

variety of novel techniques to improve the quality of discovered models. This calls

for a comprehensive benchmark of different techniques and their various configura-

tions. In doing so, it is worthwhile creating artificial event logs to test the approach

under scenarios that are likely to happen, but not captured in existing, real-world

datasets. Also, it will be useful to explore how the characteristics of event logs,

their processes, and the organizations may inform the selection and configuration

of the techniques employed in the approach.



87

Chapter 6

Applying Organizational

Models to Workforce Analytics

Event logs are useful data sources for deriving knowledge about the organizational

grouping of human resources in the context of business process execution. In

the previous chapters, we concentrated on discovering organizational models that

effectively characterize resources, their grouping, and their involvement along mul-

tiple process dimensions. We proposed approaches to automatically constructing

such models with minimum data requirements and evaluating discovered models

to ensure that they capture the organizational information stored in event logs

completely and exactly (i.e., achieving good model fitness and precision).

In this chapter, we will focus on the application of organizational models to

support workforce analytics concerned with employee groups. This is built upon

the organizational model analysis in the OrdinoR framework: extending an orga-

nizational model with the temporal information about events and cases in an event

log, so that the behavior of resource groups and their members can be examined.

In Chapter 5, we focused on using this idea for diagnosing low-quality discovered

models, that is, to locate issues that cause a model to deviate from the input event

log (Section 5.3.3). Here, we enhance the idea for a different purpose — we aim at

utilizing event logs to create “profiles” of resource groups to quantitatively char-

acterize how they work in business process execution, from various aspects and

across different periods. Specifically, we will look into what aspects can be mea-

sured as the work profiles of resource groups, and will discuss how these measures

can be analyzed to provide insights into managing resource groups.

This chapter is based on work published in [93].



88

6.1 Preliminaries

To explain the profiling of resource groups from various aspects, we first introduce

the following auxiliary notation for organizing events in a log. T is the universe

of timestamps, and [t1, t2) denotes a half-open time interval with t1, t2 ∈ T and

t1 < t2. Let EL = (E,Att , π) be an event log and let OM = (RG ,mem, cap) be an

organizational model with a set of pre-defined execution contexts CO = rng(cap),

then

• given an execution context co ∈ CO , [E]co denotes the set of events in EL

corresponding to co (Definition 3.4);

• given a resource group rg ∈ RG ,

[E]rg = { e ∈ E | πres(e) ∈ mem(rg) }

denotes the set of events in EL originated by resources in rg ;

• given a time interval [t1, t2),

[E]t1,t2 = { e ∈ E | πtime(e) ∈ [t1, t2) }

denotes the set of events in EL originated between t1 (inclusive) and t2.

We also define some auxiliary notation for organizing cases in an event log.

• Given an execution context co = (ct , at , tt) ∈ CO ,

[EL]casect = { c ∈ rng(πcase) | c ∈ φcase(ct) }

denotes the set of cases in EL having case type ct ;

• given a resource group rg ∈ RG ,

[EL]caserg = { c ∈ rng(πcase) | ∃e∈E [πcase(e) = c ∧ πres(e) ∈ mem(rg)] }

denotes the set of cases in EL that involved members of rg ;

• given a time interval [t1, t2),

[EL]caset1,t2 =
{
c ∈ rng(πcase)

∣∣∣ ∃e∈[E]t1,t2
[πcase(e) = c]

}
denotes the set of cases in EL with at least one event occurrence between t1

(inclusive) and t2;



89

• given a time interval [t1, t2),

[EL]caset1,t2,complete =
{
c ∈ [EL]caset1,t2

∣∣ ∄e′∈E [πcase(e′) = c ∧ πtime(e
′) ≥ t2

] }
denotes the set of cases in EL completed between t1 (inclusive) and t2.

In addition, for a case in the log c ∈ rng(πcase) that is completed, we use τ(c) to

denote the case cycle time, i.e., the duration from the first event to the last event.

Formally, let ecstart ∈ E such that ∄e′∈E [πcase(e
′) = c ∧ πtime(e

′) < πtime(e
c
start)],

and ecend ∈ E such that ∄e′∈E [πcase(e
′) = c ∧ πtime(e

′) > πtime(e
c
end )], then we have

τ(c) = πtime(e
c
end )− πtime(e

c
start) .

6.2 Resource Group Work Profiles

Drawing on the theoretical and conceptual background in the prior section, this

section presents the notion of work profile of resource groups, inspired by research

on mining individual resource behavior [58, 39, 70]. A work profile of a resource

group can be defined as a collection of indicators used to measure different aspects

of that group of resources, in terms of their interaction with the relevant work in

process execution. As with any indicators related to performance, the measure-

ment of indicators is temporally aware, i.e., considering a time interval between t1

and t2, in which the respective performance of a group is measured [20]. By spec-

ifying the relevant interval, work profiles can reflect the fact that the performance

of resource groups is often dynamic due to resources having shifts and turnover.

Definition 6.1 (Work Profile of a Resource Group). Let RG be a set of resource

group identifiers, T the universe of timestamps, and [t1, t2) a half-open time in-

terval with t1, t2 ∈ T and t1 < t2. Let I be a set of names for possible indicators.

Given a resource group rg ∈ RG, WP = (rg , t1, t2, I, λ) is a work profile for the

resource group during time period [t1, t2), where λ : I → R specifies the quantified

measures of the indicators.

The definition provides a general representation of indicators measuring differ-

ent aspects of a resource group over a specific time frame.

6.2.1 Work Profile Indicators

By reviewing the management literature, we identified a number of studies on hu-

man resource performance measurement [13, 16, 20, 31, 35] that can inform the

proposal of a resource group’s work profile useful for workforce analytics. The

indicators correspond to the input-throughput-output view on processes [21]: Per-

formance regarding input-output can be measured with indicators related to pro-

ductivity and efficiency. Whether a specific output is achieved is referred to as goal



90

achievement. Finally, the throughput is reflected by the summation of employee

workload in a group. As a result, we present a collection of three general aspects

and the associated indicators, focusing on a resource group in its entirety.

Workload [16]: What and how much work is a resource group involved in? This

can be measured by

• allocation, the overall amount of work allocated to the group;

• assignment, the amount of the group’s workload assigned to specific work;

• relative focus, the proportion of the group’s workload assigned to specific

work; and

• relative stake, the amount of contribution by the group to specific work.

Performance [13, 20, 31, 35]: How does a group perform? This can be mea-

sured by

• amount-related productivity, the amount of work completed by the group;

• time-related productivity, the time required by the group to complete the

work; and

• efficiency, the amount of satisfactory work produced by the group.

Goal achievement [13, 31]: To what extent does a group adhere to goals?

This can be measured by effectiveness, i.e., the proportion of established goals

accomplished by the group.

In this research, we also consider how resource groups interact with work in

terms of their involvement in business process execution captured by event logs.

This is reflected in the following three aspects and their indicators, which measure

how group members interact with relevant work in a process and with each other.

Participation [13, 20]: How do group members commit to work? This can be

measured by attendance, the number or proportion of group members committing

to work.

Distribution [13]: How is work distributed over group members? This can be

measured by

• member load, the amount of work allocated to individual group members,

and

• member contribution, the amount of specific work contributed by an individ-

ual group member.



91

Collaboration [20]: How is the collaboration among group members? This

can be measured as cooperation, i.e., the extent of collaboration between group

members.

The above collection of six aspects and associated indicators can be used to

form the template of a group’s work profile for group-oriented analysis. Note that

the term “work” here refers to either the activities or cases in business process

execution.

6.2.2 Extracting and Analyzing Work Profiles

We introduce an approach to extracting and analyzing work profiles of resource

groups using event logs. Figure 6.1 depicts an overview of the proposed approach

consisting of two phases.

organizational 
model

domain knowledge

execution 
contexts

Link events/cases to 
execution contexts

events/cases 
classification

Determine
resource groups and 
execution contexts

event log

Extract 
work profiles

resource group 
work profiles

resource 
groups

Conduct 
within-group analysis

Conduct 
group-level analysis

Figure 6.1: An overview of the approach to extracting and analyzing resource
group work profiles. Note that an organizational model or domain knowledge can
be used alternatively as input

Extraction of Work Profiles

The approach starts with determining resource groups and execution contexts.

The first input is an event log, which should satisfy the minimum requirements

by recording at least the standard attributes and the resource identifier (Defini-

tion 3.2). An organizational model is required as the second input, which can be

obtained through model discovery from event logs (Chapter 5). Alternatively, do-

main knowledge that informs execution contexts and resource groups may be used

as input when (i) there exists clear information on case types, activity types, time

types, and resource grouping that users wish to use for analyses; or (ii) discovered

organizational models do not have satisfactory quality. Note that the types should

be determined through the direct type specification (Section 5.1.1), i.e., defining

type names and their correspondence to the categorization of cases, activity labels,



92

and timestamps. Similarly, any domain knowledge about resource groups should

correspond to the grouping of resource identifiers in the log. The above require-

ments on input domain knowledge are essential to ensuring that the knowledge

can be used as an alternative to an input organizational model.

The next step is linking events and cases in the input log to the execution

contexts, which is straightforward given the mapping between types and event at-

tributes. The output is the classification of events and cases, i.e., for any execution

context, we can retrieve a unique set of events and a set of related case identifiers

from the event log.

Then, the indicators of work profiles of resource groups can be calculated. We

formally describe the pre-defined work profile indicators (Section 6.2.1) that can be

directly extracted given an event log with essential information recorded. Given

an event log EL = (E,Att , π), a set of resource groups RG and their members

mem : RG → P(R), and a set of execution contexts CO , the pre-defined work

profile indicators can be measured for a resource group rg ∈ RG and a time

interval [t1, t2) as follows.

Workload The indicators of resource group workload capture the amount of

different types of work carried out by a resource group. With respect to an event

log, the amount of work can be quantified by considering either the number of

activities (which can be inferred from the number of unique events) or the number

of cases (which can be inferred from the number of unique case identifiers).

• allocation is measured by the total number of activities conducted by a

group, |[E]rg ∩ [E]t1,t2 |, or by the total number of cases involving the group,∣∣[EL]caserg ∩ [EL]caset1,t2

∣∣;
• assignment is measured by the number of activities conducted by a group

that are specific to some execution context (co), |[E]rg ∩ [E]t1,t2 ∩ [E]co |, or
by the number of cases involving a group that are specific to some case type

(ct),
∣∣[EL]caserg ∩ [EL]caset1,t2 ∩ [EL]casect

∣∣;
• relative focus measures the assignment of specific activities to a group in

proportion to the group’s allocation. We proposed this as a model analysis

measure (Definition 3.13). Here, we extend it to consider a selected time

interval, i.e., counting only events in [E]t1,t2 . To measure relative focus based

on cases, one can calculate the proportion of assignment to allocation by case

number, that is,
∣∣[EL]caserg ∩ [EL]caset1,t2 ∩ [EL]casect

∣∣/∣∣[EL]caserg ∩ [EL]caset1,t2

∣∣.
• relative stake measures the assignment of specific activities to a group in

proportion to the total execution of those activities captured by the event

log. We proposed this as a model analysis measure (Definition 3.14). Sim-



93

ilar to relative focus, here we count only events and cases in [E]t1,t2 : rela-

tive stake based on events is |[E]rg ∩ [E]t1,t2 ∩ [E]co |
/
|[E]t1,t2 ∩ [E]co |; relative

stake based on cases is
∣∣[EL]caserg ∩ [EL]caset1,t2 ∩ [EL]casect

∣∣/∣∣[EL]caset1,t2 ∩ [EL]casect

∣∣.
Performance The indicators of group performance can be quantified by consid-

ering cases completed in a given time interval. Let [EL]caserg,t1,t2,complete = [EL]caserg ∩
[EL]caset1,t2,complete be cases completed in interval [t1, t2) by a group, then

• amount-related productivity is measured by the total number of completed

cases by the group,
∣∣∣[EL]caserg,t1,t2,complete

∣∣∣;
• time-related productivity is measured by the average time taken by the group

to complete those cases,(∑
c∈[EL]caserg,t1,t2,complete

τ(c)

)
/
∣∣[EL]caserg,t1,t2,complete

∣∣ ;
• efficiency extends amount-related productivity by including some pre-defined

normative criteria. For example, an analyst can specify that only cases com-

pleted within 10 days are considered “satisfactory”, and therefore efficiency

will be calculated based on the number of satisfactory cases by the group

only.

Goal achievement The effectiveness indicator measuring the goal achievement

of a resource group is quantified based on other aspects and their indicators. For

example, given two goals established in terms of the maximum amount of alloca-

tion (measuring workload) and the minimum level of efficiency (measuring perfor-

mance), the effectiveness of a group can be measured by considering whether the

group accomplishes these goals, respectively.

Participation The indicator attendance can be quantified by considering the

occurrences of group members carrying out activities or cases. Note that this

should be considered a rough estimate, since an event log may not accurately

capture the time when employees started working on a process. Let r ∈ mem(rg)

denote a member of a resource group rg , then

• attendance is measured by the number of member resources in a group who

originated at least one event,
∣∣∣{ r ∈ mem(rg)

∣∣∣ ∃e∈[E]t1,t2
πres(e) = r

}∣∣∣.
Distribution The indicators for distribution are defined over group members by

calculating the portion of workload of the group. Again, consider r ∈ mem(rg) a

member of a resource group rg ,



94

• member load is measured by the number of activities performed by a re-

source, |{ e ∈ [E]rg ∩ [E]t1,t2 | πres(e) = r ∧ r ∈ mem(rg) }|. Clearly, the sum

of member load across all members of a group should be equal to the activity

allocation to the group;

• member assignment is measured in a similar way, but considering only specific

activities that are part of an execution context co, that is,

|{ e ∈ [E]rg ∩ [E]t1,t2 ∩ [E]co | πres(e) = r ∧ r ∈ mem(rg) }|.

Collaboration Quantifying the extent of collaboration among employees using

event logs can be challenging, since (i) event logs usually do not capture the com-

munication between employees and (ii) the way collaboration happens in different

processes and organizations may vary. We consider a possible way to estimating

cooperation. One can use the event log to construct the handover-of-work net-

work [79] of group members, which reflects the frequency of work transfer between

resources in process execution. Then, the cooperation of the group can be mea-

sured by the density of the handover-of-work network — a larger density indicates

that there is more work transfer and hence a higher level of cooperation within the

group.

Analysis of Work Profiles using Visual Analytics

Building on work profiles extracted from event logs, different data analytics tech-

niques can be applied to discover patterns from the measurement of indicators.

In our approach, we discuss the use of visual analytics as an intuitive and proven

means [75] for analyzing work profiles. Following the definition of work profiles

and the relevant aspects and indicators, we consider the requirements below for

visually analyzing work profiles.

• Users should be able to interactively extract work profiles related to differ-

ent time intervals in an event log and at different granularity (e.g., daily,

monthly), and therefore track the changes of work profiles over time.

• Users should be able to have an integrated view of interrelated indicators

(e.g., allocation and assignments) to derive findings on interactions between

different aspects or process dimensions.

• Users should be able to compare indicators measured among different groups

at different times.

• Users should be able to correlate indicators for group-level analysis with those

for within-group analysis to obtain a holistic view of groups’ work behavior.



95

Based on these requirements and guided by the general principles of visual

analytics [41], we developed a design composed of several types of charts combined

with interactive filters. The design aims to provide an integrated and purposeful

visualization of multiple aspects of a resource group’s work profiles. The following

is included.

• A stacked area chart and a line chart are chosen for analyzing workload and

performance, given their advantages in capturing indicator values as time

series and showing the evolution patterns. For these two charts, interactive

filters are embedded to allow users to explore the workload and performance

indicators at different times and different levels of granularity.

• A heatmap is used for supporting the analysis of workload and distribution

with regard to different case, activity, and time types, for its usefulness in

simultaneously presenting values related to two-dimensional data attributes.

• A stacked bar chart is used for presenting intuitively the attendance of group

members with respect to group size.

By connecting different charts using the same set of interactive filters, users are

provided with an integrated view of work profiles of resource groups in a selected

time interval of interest.

We implemented a prototype built upon Vega-Lite [62]. Figure 6.2 and Fig-

ure 6.3 illustrate the prototype’s interactive visualization interface. The tool is

publicly available online7.

7 Link to the prototype tool: https://royjy.me/to/gwp-demo

https://royjy.me/to/gwp-demo


96

2 3
4

5

D

A
1

C

B
D

F
ig
u
re

6.
2:

A
n
n
ot
a
te
d
sc
re
en

sh
ot
s
o
f
th
e
p
ro
to
ty
p
e’
s
in
te
ra
ct
iv
e
in
te
rf
ac
e
fo
r
an

al
y
zi
n
g
w
or
k
p
ro
fi
le
s
re
ga

rd
in
g
w
o
rk
lo
a
d
,
p
a
rt
ic
ip
a
ti
o
n
,
a
n
d

d
is
tr
ib
u
ti
o
n
.
T
h
e
n
u
m
b
er
s
m
ar
k
d
iff
er
en
t
v
ie
w
s:

(1
)
w
or
k
lo
ad

b
y
al
lo
ca
ti
on

;
(2
)
w
or
k
lo
ad

b
y
as
si
gn

m
en
t
m
ea
su
ri
n
g
ei
th
er

a
ct
iv
it
ie
s
o
r
ca
se
s;

(3
)
w
or
k
lo
ad

b
y
re
la
ti
ve

fo
cu
s
m
ea
su
ri
n
g
ei
th
er

ac
ti
v
it
ie
s
or

ca
se
s;

(4
)
d
is
tr
ib
u
ti
on

b
y
m
em

b
er

as
si
gn

m
en
t;

(5
)
p
a
rt
ic
ip
a
ti
o
n
b
y
at
te
n
d
an
ce
.

T
h
e
v
ie
w
s
re
sp
o
n
d
to

u
se
r
in
te
ra
ct
io
n
s
si
m
u
lt
an

eo
u
sl
y
:
(A

)
se
le
ct
in
g
a
ti
m
e
in
te
rv
al

an
d
zo
o
m
-i
n
;
(B

)
h
ig
h
li
g
h
ti
n
g
sp
ec
ifi
c
g
ro
u
p
s;

(C
)

fo
cu

si
n
g
o
n
a
sp
ec
ifi
c
ti
m
e
p
er
io
d
(w

ee
k
);
a
n
d
(D

)
sh
ow

in
g
sp
ec
ifi
c
n
u
m
b
er
s
v
ia

a
to
ol
ti
p
.
N
o
te

th
a
t
th
es
e
sc
re
en

sh
o
ts

a
re

fo
r
d
em

o
n
st
ra
ti
n
g

th
e
u
se

of
va
ri
o
u
s
ch
a
rt
s
an

d
th
ei
r
in
te
gr
a
ti
on

,
a
n
d
th
e
te
x
t
w
it
h
in

th
e
sc
re
en

sh
ot
s
is

n
ot

o
f
p
ri
m
a
ry

re
le
va
n
ce



97

6 7

B

D

A

B

D

A

C C

F
ig
u
re

6.
3:

A
n
n
ot
at
ed

sc
re
en

sh
ot
s
of

th
e
p
ro
to
ty
p
e’
s
in
te
rf
ac
e
fo
r
an

al
y
zi
n
g
w
or
k
p
ro
fi
le
s
re
ga

rd
in
g
p
er
fo
rm

an
ce
.
V
ie
w
s
o
f
(6
)
am

ou
n
t-

re
la
te
d
pr
o
d
u
ct
iv
it
y
an

d
(7
)
ti
m
e-
re
la
te
d
pr
o
d
u
ct
iv
it
y
re
sp
on

d
si
m
u
lt
an

eo
u
sl
y
to

u
se
r
in
te
ra
ct
io
n
s
(A

–D
).

N
ot
e
th
a
t
th
es
e
sc
re
en

sh
o
ts

a
re

fo
r

d
em

on
st
ra
ti
n
g
th
e
u
se

of
va
ri
ou

s
ch
ar
ts

an
d
th
ei
r
in
te
gr
at
io
n
,
an

d
th
e
te
x
t
w
it
h
in

th
e
sc
re
en

sh
ot
s
is

n
ot

of
p
ri
m
a
ry

re
le
va
n
ce



98

The design shows a possible way of applying visual analytics to analyze work

profiles. While the aspects and indicators of a work profile may be further ex-

tended, other visualization techniques can be applied accordingly.

Next, we will demonstrate how the proposed approach can be applied to con-

duct a resource-group-oriented analysis. We will use a real-life event log dataset,

bpic15, which records a building permit application process performed in five

Dutch municipalities. For details on this dataset, refer to Section 4.4.1.

6.3 Case Study: One Process, Five Municipalities

We used the bpic15 dataset to conduct a case study and tested our approach. The

dataset captures how an identical building permit handling process was performed

in five different municipalities in an approximate four-year period. The process

owners raised a few business questions, aiming to better understand the differ-

ences between the municipalities and their impact on performance. Some of these

questions are as follows.

1. Where are differences in throughput times between the municipalities and how

can these be explained?

2. What are the roles of the people involved in the various stages of the process

and how do these roles differ across municipalities?

bpic15 serves as a representative example for scenarios where multiple resource

groups perform similar work and the managers wish to compare them and derive

implications for future improvements. Given this context, we considered each

municipality as a resource group in our evaluation and applied the approach to

extract and analyze their work profiles.

We preprocessed the original data to facilitate the analyses, guided by the

business questions. To ensure a fair comparison across the five groups, we set

the scope of analysis to the main subprocess of handling cases between year 2011

to 2014. To this end, we first filter events recording the main subprocess (with

“01 HOOFD” as the “subprocess” attribute value). Then, we keep only cases that

started no earlier than 2011-01-01 and were completed no later than 2014-12-31.

Also, we discarded cases that have invalid cycle time recorded, i.e., the duration

between the first and the last event should be greater than 0. Lastly, we discarded

a few cases that were handled by employees from more than one municipality —

so that the case cycle time can indicate the performance of each individual group.

Clearly, the given business questions are concerned with the existing grouping

of resources, i.e., the five municipalities. Hence, in this case study, we chose not

to use discovered organizational models, but instead manually determine the exe-

cution contexts through direct type specification. For case types, we distinguished



99

between cases that were related to a construction permit and those unrelated. This

can be determined by the value of a derived case attribute, “case:parts Bouw”. For

activity types, we considered the different phases in the process, extracted from

the unique values of a derived event attribute “phase”. For time types, we used

the seven days of the week, i.e., Monday to Sunday.

As a result, the preprocessed dataset used for analyses contains a total of

167691 events from 4792 cases involving 61 resources in the five resource groups

(municipalities). The defined execution contexts consist of two case types, nine

activity types, and seven time types.

6.3.1 Group-level Analysis

We first conducted the group-level analysis and focused on the workload and per-

formance aspects. We aimed at investigating Question 1, which is concerned with

performance differences. For simplicity, we hereby refer to the five resource groups

by short names, e.g., “muni-1” denotes the first municipality.

Workload analysis We organized events and cases along the execution contexts

to compare the workload of resource groups. Figure 6.4 shows the visualization of

group workload in terms of cases organized by case types, and events organized

by activity and type times. The five groups show similarities regarding the types

of cases they processed (Figure 6.4a), as the majority leaned toward handling

the construction-related applications, especially muni-1 and muni-5. They also

exhibit very similar patterns in terms of assigning their group workload according

to different types of activities (Figure 6.4b). Slight differences can be observed

as neither muni-4 nor muni-5 has worked on activities of type 6. Also, employees

from muni-2 and muni-5 seem to have committed to more workload in executing

activities of type 8 (“01 HOOFD 8”). An interesting observation is concerned with

the weekday pattern shown in Figure 6.4c. Observe that muni-1 differs from the

others as it had only 12% of its total workload assigned on Wednesdays. In the

meantime, muni-2, muni-3, and muni-5 seem to form another cohort as Fridays

were their least busy day. This may be related to different arrangements of office

hours in the groups.

Performance analysis Figure 6.5 presents an overview of group performance

measured by indicator amount-related productivity and time-related productivity for

different year-quarters. For the analysis in this part, we based our observations

on work profiles starting from 2012 Q1, since we only included cases started after

2010-12-31 in our evaluation. Hence, the numbers related to case completion in

the early quarters of 2011 do not reflect the actual performance (note that the

mean case cycle time in the dataset is 91.1 days).



100

(a) based on cases of different types

(b) based on events of different activity
types

(c) based on events of different time
types

Figure 6.4: Workload of the five groups in 2011–2014, measured by relative focus.
The number “0%” corresponds to a rounded percentage value within the range
(0, 0.5%), whereas a cell without annotation corresponds to a value of 0. Notice
the similarities between the five groups regarding case types and activity types,
and the differences regarding time types

From Figure 6.5a, we can see that 2012 has the most completed cases. The

groups’ performance decreased in 2013 and went slightly higher in 2014. An obser-

vation worthwhile mentioning is that muni-4 had a sudden increase in performance

in 2013 Q2 and 2013 Q4, and later decreased to a level comparable to the other

groups. Figure 6.5b provides another perspective on group performance visualiz-

ing time-related productivity. Note that it is calculated by the average cycle time

of completed cases, hence the performance is high when the value is low, and vice

versa. We can see that muni-3 delivered steadily high performance in terms of

shorter cycle time; muni-5 had a relatively consistent level of performance, which

slightly improved during the year 2013; muni-1 and muni-4 were similar in general,

except when approaching the end of 2014. Specifically, muni-2 stands out as its

performance changed across the four quarters — within each year it started low in

Q1, improved in Q2, and gradually decreased toward the end of the year (Q3 and

Q4). This unique pattern of muni-2 would be of interest for further investigation.

Meanwhile, the spike in case cycle time in muni-1 and muni-4 in 2013 also



101

(a) amount-related productivity (number of completed cases)

(b) time-related productivity (average time taken to complete
cases)

Figure 6.5: Performance of the five groups in 2011–2014. Our analysis was based
on data collected after 2011

deserves attention. With our previous observation on the increase of throughput

of muni-4 in the same period, we selected the interval of 2013–2014 and used the

detailed view to drill down on the performance of muni-4.

Figure 6.6 depicts the visualization. The upper view clearly shows four sharp

increases of amount-related productivity. In each of the four weeks, muni-4 com-

pleted significantly more cases (more than 30) compared to all other groups (less

than 10). This explains the spike in the overview (Figure 6.5a) and may sug-

gest the existence of batching behavior of muni-4. Interestingly, the increase of

amount-related productivity seems unrelated to the group’s time-related productivity

as shown in the lower view. Cross-checking the same weeks in the two charts, we

can see that the potential batching completion did not directly link to a signifi-

cantly longer case cycle time of muni-4.

6.3.2 Within-Group Analysis

We proceed to analysis at the group-member level motivated by Question 2, which

considers the role differences between municipalities. Following the question, we

analyzed the distribution within each group. We focused on the active group mem-

bers, i.e., resources who committed to at least 1% of a group’s activity allocation.

Distribution analysis Figure 6.7 presents how individual resources within each

group handled events of different activity types and case types. The former reflects

their participation at different phases (“01 HOOFD 0” to “01 HOOFD 8”) of the



102

Figure 6.6: Performance of muni-4 by amount-related productivity (upper chart) and
time-related productivity (lower chart) in the selected interval 2013–2014. Notice
the spikes in amount-related productivity — the vertical lines indicate the week
numbers, e.g., “W-14” corresponds to the 14th week of the year

permit application process, while the latter reflects their involvement in different

categories of applications (construction vs. non-construction).

Comparing the columns in the heatmaps, we noticed two major cohorts within

each of the five groups. This is the most significant in the cases of muni-4 and

muni-5. On the one hand, there exists a cohort of resources focusing primarily on

performing activities of type 0, 4, and 5, while they seldom carry out activities

in the middle of the process (type 1, 2, and 3). Among them, there are a few

that also showed similar distribution to construction- and non-construction-related

cases (with either category taking 40% − 60% of an individual resource). On the

other hand, there is a cohort of resources who were mostly executing activities

from phases in the middle (types 1, 2, 3, and 4) in a balanced manner. This

second cohort of resources was less involved in executing activities of types 0 and

5. Also, they were all relatively specialized in terms of handling the two types of



103

(a) muni-1 (b) muni-2

(c) muni-3 (d) muni-4

Figure 6.7: Distribution within each of the five groups (2011–2014), measured by
member assignment in terms of activity types and case types. The values have been
normalized by member load of each individual for role analysis. The number “0%”
corresponds to a rounded percentage value within the range (0, 0.5%), whereas
a cell without annotation corresponds to a value of 0. Notice that resources an-
notated with red lines are those exhibiting patterns unique to municipalities, as
discussed in the within-group analysis

cases (events of one case type dominating the other).

Let us take muni-4 as an example. (i) Resource “560752”, “560781”, and



104

(e) muni-5

Figure 6.7: (Cont.) Distribution within each of the five groups (2011–2014), mea-
sured by member assignment in terms of activity types and case types. The val-
ues have been normalized by member load of each individual for role analysis.
The number “0%” corresponds to a rounded percentage value within the range
(0, 0.5%), whereas a cell without annotation corresponds to a value of 0. Notice
that resources annotated with red lines are those exhibiting patterns unique to
municipalities, as discussed in the within-group analysis

“560821” are the ones corresponding to the first cohort. In particular, “560752”

and“560781” were distributed a comparable number of events from construction

and non-construction cases (64% vs. 36%; 55% vs. 45%). (ii) All other members

of the group correspond to the second cohort. These two different yet possibly

complementary resource cohorts may reflect two business roles in the process.

The heatmaps also highlight patterns unique to some municipalities. For exam-

ple, resource “560925” in muni-1 carried over 89% of its total workload in executing

activities of type 0, and 8% in conducting activities of type 1. The resource was

rarely involved in activities during the later phases of the process. While such a

pattern is not observed in the other groups, it implies that muni-1 might have set

up a specific role for dealing with the initial processing of the received applications.

As another example, resource “8492512” in muni-5 only executed activities of

type 0, 4, and 5 in the four-year period, and may have acted as a specialist for

the first major role identified previously (i.e., resource cohort focusing mainly on

activities of types 0, 4, and 5). Similarly, resource “560752” may have served in

the same specialist role in muni-5 — note that this resource had played the first

major role when working for muni-4.

Lastly, in muni-4 and muni-5, there exist two resources that never executed



105

activities in the context of construction-related cases (“560812” in muni-4 and

“560596” in muni-5) and show patterns of the second major role (i.e., focusing

mainly on the middle phases of the process). They may be staff who did not

possess the required knowledge of permissions to deal with construction-related

applications.

6.3.3 Summary

The above analyses of group work profiles using visual analytics revealed interesting

patterns in terms of how five different resource groups worked on the same process.

To address the first business question (throughput time difference), we analyzed

the performance aspect measured by two indicators, amount-related productivity

and time-related productivity. We concluded that group performance varies regard-

ing time-related productivity. In particular, we found similarities between certain

groups, i.e., muni-3 and muni-5, muni-1 and muni-4, and highlighted the specific

yearly performance pattern exhibited by muni-2. We also compared the groups in

terms of the workload over the four-year period, measured by relative focus. The

differences between the groups mainly lie in the time dimension. While these ob-

servations cannot be used to directly explain the throughput time difference, they

are useful insights for further investigation.

For the second question (role differences), we analyzed the distribution aspect

based on the indicator member assignment. The analysis revealed two major roles,

which focused on different phases of the process, and also identified resources and

possible roles that were unique to certain groups.

6.4 Discussion

This chapter presents the notion of resource group work profiles — a collection

of quantitative indicators measuring resource group performance in process ex-

ecution from six aspects, which we synthesized from reviewing the management

literature. Based on this notion, we introduced an approach to extracting and

analyzing resource group profiles. First, given an event log and an organizational

model (alternatively, domain knowledge specifying resource groupings and execu-

tion contexts), the pre-defined indicators can be calculated; then, visual analytics

can be applied to the profiles to track, compare, and correlate different aspects

of resource groups’ performance. We tested our approach on a real-life event log

dataset. The results reveal insightful patterns that can be used to answer ques-

tions related to workforce analytics proposed by the process owner. For the more

complicated questions, our results can be used to pinpoint groups and aspects that

require further investigation. While we did not aim at a thorough study of the

resource groups in the dataset, we demonstrated that our approach can be applied



106

to organizational models and event logs and supports group-oriented workforce

analytics.

Our work has several contributions. First, the work profile indicators systemat-

ically extend the set of model analysis measures in the OrdinoR framework to more

aspects relevant to workforce analytics, taking into account temporal changes. The

six aspects, along with the pre-defined work profile indicators that we developed,

contribute to answering RQ2.1. They broaden the way of diagnosing organiza-

tional models, e.g., one can find out exactly when a resource group has a low

relative stake regarding an execution context, by checking the group participation

and distribution at different time intervals. As such, it becomes possible to explain

not just where an organizational model disagrees with an event log, but also to

locate where the log disagrees with the model. Second, the proposed approach

based on work profiles contributes an application of the OrdinoR framework. It

enables the use of organizational models and event logs to objectively characterize

and evaluate different employee groups over time. From a practical perspective,

this provides organizations with the capability of continually adapting the organi-

zational structures deployed around employees (addressing RQ2.2). Last but not

least, our work also contributes to the use of visual analytics in process mining

research.

As with any research, our work is subject to limitations. First, in terms of

research methods, the synthesis of the work profile indicators will benefit from

(i) conducting a systematic literature review of the dedicated literature to identify

a more comprehensive collection of aspects and indicators, and (ii) using a require-

ment analysis to identify data attributes that need to be recorded by event logs

concerning the extended aspects, or data sources in addition to event logs. Sec-

ond, other methods for analyzing resource group work profiles should be explored.

Visual analytics is a suitable means for descriptive analyses, especially during the

initial exploration of the extracted profiles. But to explain the causes of observed

issues or to make predictions for planning purposes, methods like correlation anal-

ysis and regression analysis should be applied.



107

Chapter 7

Epilogue

Take history as a mirror, so in light of the past one can evaluate

the present and see future trends. Take people and their words as

a mirror, so one can reflect on gains and losses.8

– Emperor Taizong

Summary

This thesis set out to explore process mining as a solution to extract knowledge

about organizational groupings from event logs and use that knowledge to facilitate

the management of human resources groups. Motivated by the research problem,

we first conducted a thorough review of the existing organizational model mining

approaches, which is a set of process mining techniques dedicated to discovering

knowledge about resource groupings. Our review identified several key research

gaps to be addressed. Therefore, we proposed a conceptual framework (OrdinoR)

built around a novel definition of organizational model that describes both the

grouping of resources and groups’ involvement in process execution — the latter is

neglected by many existing solutions. We also introduced fitness and precision as

measures for evaluating the quality of organizational models, and a set of measures

for analyzing organizational models. Guided by the framework, we proposed an

approach to discovering organizational models. It starts with the learning of execu-

tion contexts, which utilizes the so-called type-defining attributes recorded in event

logs to derive a set of logical rules that best describe the specialization of resources

in process execution. The learned execution contexts can then be used to identify

the grouping of resources sharing similar characteristics and linked to the groups

to describe their involvement in process execution. As a result, organizational

models are discovered from the input event logs. Experiments were conducted

using real-life event logs collected from processes of three business domains. The

8 This quote is translated by the author based on the contents of Chapter 71 (Biography 21) in the
Old Book of Tang, a work of history about the Tang dynasty, compiled by a team of scholars in
approximately 941–945 CE.



108

results demonstrated that the proposed approach is feasible and effective. We also

explored the use of organizational models for group-oriented workforce analytics.

We introduced the notion of resource group work profile, which can measure six

aspects of how resource groups work in process execution using various indicators,

across group and individual levels, over different time periods, and along multiple

process dimensions. We also proposed an approach to extract these work pro-

files from event logs and analyze them using visual analytics. We conducted a

case study on an event log dataset that records five resource groups performing

the same process, which demonstrated the usefulness of using work profiles for

analyses of resource groups and their members in the context of process execution.

The approaches presented in this thesis satisfy the solution criteria introduced

in Chapter 1 as follows.

C1. Formal foundation: We formally defined all concepts in the proposed ap-

proaches and used them as foundations to provide unequivocal descriptions of the

constituent methods, algorithms, and measures.

C2. Conceptual solution: We used conventional notions in the fields of business

process management and process mining to describe the concepts, methods, and

measures in our approaches. Their realization is independent of specific technolo-

gies or implementations, e.g., event logs that satisfy Definitions 3.1 and 3.2 can be

utilized as input, regardless of the data formats used to store them. This enhances

the extensibility of the solution and prevents problems due to over-specification.

C3. Use of necessary information: Our approaches are designed to consider the

multidimensional nature of process execution and strive to maximize the use of

available log information relevant to the organizational grouping of resources, be-

yond just process activity or case information. While three specific key dimensions

are considered in this thesis (case, activity, and time), our solution has the flexibil-

ity to allow for incorporating other relevant dimensions, e.g., resource interactions

or geographical locations of resources.

C4. Interpretable: The organizational models in the OrdinoR framework can

represent both the grouping of human resources and their involvement in process

execution through execution contexts. This allows clear interpretation of models

discovered from event logs — not just how resources are grouped but also why

they are grouped.

C5. Objectively assessable: The model evaluation measures in our solution, i.e.,

fitness and precision, are designed for assessing the quality of discovered organiza-

tional models against event logs — which serve as a reference that records process

execution in reality and is irrelevant to the methods applied in model discovery.

Hence, fitness and precision can be considered as extrinsic evaluation measures, as

opposed to the technique-specific measures used in the literature [7, 95].

C6. Independently assessable: The calculation of fitness and precision uses an



109

organizational model and an event log as input. It does not require additional

information such as official organizational structures.

C7. Executable: Our solution is implemented as a set of open-source software

tools. These tools were validated to be executable on real-life event logs through

the experiments.

C8. Applicable: Our approaches impose only minimum requirements on input

event logs (the presence of case identifiers, activity labels, timestamps of events,

and resource identifiers). These can be fulfilled by many common, real-life event

logs. While the approach to learning execution contexts (Chapter 4) requires user

knowledge and additional type-defining data attributes recorded in event logs, the

requirement is not domain-specific (any event attributes satisfying Definition 4.1

will work). Moreover, the evaluation experiments demonstrated that the solution

can be applied to event logs collected from processes in various domains (gov-

ernment administration, financial services, and healthcare). These indicate the

general applicability of our approaches.

Contributions

This doctoral research contributes to the field of process mining from the organi-

zational perspective [78]. Specifically, it addressed three research gaps concerned

with organizational model mining by (i) utilizing multidimensional event log in-

formation for model discovery, (ii) improving the interpretability of organizational

models by capturing resource group involvement in process execution, and (iii) en-

abling a generic method for assessing the quality of discovered models with model

evaluation and model analysis measures. Furthermore, our approach to extracting

and analyzing resource group work profiles presents a novel means to exploit dis-

covered organizational models for analyzing resources and their groupings. This

enhances the practical use of organizational model mining. Last but not least,

the notion of execution contexts and the approach to learning them from event

logs also contribute to other research topics on resource-oriented process mining

(Section 2.2) — analyzing individual resources and comparing them along different

process dimensions.

Our work also contributes to the field of human resource management on the

topic of workforce analytics. We introduced event logs as a useful data source and

how they can be exploited using our approaches. Our experiment results showcased

the feasibility of using event logs for the analysis of group workload, performance,

and work distribution over group members of various roles. In doing so, our

research may be of assistance to the discussion of connecting human resource

management to the domain of business process management [65].



110

Threats to Validity

At the end of each chapter above, we have discussed the limitations of our ap-

proaches. The following is concerned with the threats to the validity of the overall

research.

The first concern is internal validity. Event logs — however extensive and de-

tailed — can only capture certain information about actual business processes, the

participating employees, or their organizations. Hence, confounding factors may

exist in terms of how employees are organized into groups and involved in process

execution. But these factors are not reflected by organizational models discovered

from event logs. Clearly, without additional input, knowledge discovered from

given data can hardly transcend the scope of the original data collection. There-

fore, to mitigate the impact of confounding factors, it is vital to understand the

scope and characteristics of event logs and their corresponding processes. Note

that our approaches can be applied following the Process Mining Project Method-

ology [85] (see Section 1.2) — as such, the scope and quality of event data, process

characteristics, and other process knowledge should be clarified in the project

planning and data extraction stage, before applying our approaches (mining and

analysis stage). Also, any findings obtained from applying the approaches should

be evaluated by involving people who possess the relevant business domain and

process knowledge, e.g., business owners, process stakeholders, and domain ex-

perts [85].

Another concern is external validity. While the selected techniques and data

are suitable examples of the respective artifacts in our research, experimental re-

sults are prone to certain circumstances and therefore may not be generalized

easily. Also, the results may risk being biased due to the specificity of the se-

lected techniques and data. To address these limitations, it is essential to further

explore the configurability of the OrdinoR framework through experiments that

use more event logs collected from different processes and business domains and

apply an extended set of techniques. For this purpose, the selection of input data

and techniques can be based on the event log requirements (see Sections 3.1, 3.2,

and 4.1) and the key tasks of organizational model discovery (see Section 3.4)

as initial criteria. For configuring specific parameters, data mining methods like

cross-validation and grid search can be useful, as shown in the experiments. Syn-

thetic data generated from process simulation can also be used to complement

real-life data to cover possible but less common scenarios.

Finally, it is worthwhile noting that experimentation is inevitably limited when

investigating how to apply the framework to real problems — future evaluations

need to involve case studies in real-world organizations.



111

Future Work

This thesis paves many avenues for future research. We discuss some of them

below.

Conformance checking of organizational models This is concerned with

comparing modeled behavior with the observed, real behavior recorded in event

logs [78]. To begin with, organizational models are constructed from existing em-

ployee groupings, such as departments, business roles, and project teams. This

can be done by identifying (i) employee groups and their members involved in

process execution, and (ii) the patterns or rules regarding how process activities

are performed based on the grouping, in order to specify types for defining execu-

tion contexts. Data other than event logs may be needed, e.g., documents about

work distribution rules and timetables showing employee shifts. Then, given an

organizational model, either discovered or based on existing employee groups, con-

formance checking can be performed. More specifically, fitness and precision in the

OrdinoR framework can be used for global conformance checking — measuring the

extent of commonalities between the modeled and actual behavior of human re-

source groups. The model analysis measures, e.g., group relative stake, can be used

for local conformance checking — showing where and how the modeled human re-

source groups differ from reality. Hence, by combining conformance checking with

organizational model mining capability, the OrdinoR framework lays the foun-

dation for systematically exploiting process execution data to guide the design

of organizational structures (covering, e.g., role designation and employee team

composition) and staff deployment alongside changing business processes. Organi-

zations can thus be empowered to evolve organizational structures toward process

improvement, and to iteratively evaluate their decisions to enhance coordination,

team effectiveness, and work satisfaction. To support this capacity-building, fu-

ture work can investigate additional information needed in event logs to measure

those goals.

Introducing additional quality evaluation measures In theOrdinoR frame-

work, two measures are proposed for evaluating the quality of discovered organi-

zational models, i.e., fitness, which measures model completeness, and precision,

which measures model exactness. More quality dimensions can be considered and

will require additional evaluation measures. For instance, when two organiza-

tional models discovered from the same event log have the same level of fitness

and precision, it will be interesting to consider the extent of model simplicity. A

simpler model that can explain the same behavior observed in event log data may

be preferred. Also, from the perspective of knowledge discovery from data, it is

important to consider the extent of generalization of a discovered model, i.e., the



112

ability of the model to describe resource groupings based on observations captured

by multiple event logs of the same process, instead of overfitting just the examples

in the input event log.

Extension to the organizational model definition The current definition

of organizational models (Definition 3.5) captures the grouping of resources and

their involvement in process execution via execution contexts. Note that from

an organizational structure point of view [22], such a resource grouping is “flat”.

Therefore, an extension to the model definition can be to consider hierarchical

relations among resource groups. It would also be interesting to consider extending

the set of “core event attributes” for execution contexts, so that organizational

models can capture additional process dimensions, such as geographical locations,

staff costs, etc., when such information is recorded in event logs. Of course, these

extensions will trigger new challenges in terms of the approaches to discovering

models.

Application of organizational models to process simulation Simulation

constitutes an important feature of many business process management tools. Hav-

ing an approach that extends state-of-the-art process simulation techniques with

organizational models can help validate potential modifications of an organiza-

tional model. Solutions to this issue will complement the approaches presented in

this thesis and provide answers to “what-if” questions in workforce analytics, fur-

ther enhancing the support for evaluating alternative decisions on organizational

resource management.

Last but not least, since this research produces data-driven approaches sup-

porting human-related decisions, future work should explore privacy and ethics

concerns around the application of the approaches and ensure legitimate and re-

sponsible usage.



113

Appendix A

Full Experiment Results

Table A.1: Full results of the evaluation (Section 4.4) of all 100 solutions of
learning execution contexts from the experiment datasets, applying the tree-based
and SA-based method, respectively

Log Method
Size Quality CPU time

#contexts #CT #AT #TT impurity dispersal score (seconds)

bpic15 tree-based 571 101 8 2 0.407 0.290 0.647 224

bpic15 tree-based 2583 97 22 6 0.374 0.457 0.581 2086

bpic15 tree-based 1787 98 28 2 0.380 0.399 0.611 1416

bpic15 tree-based 1547 100 23 2 0.386 0.415 0.599 1157

bpic15 tree-based 1149 100 20 2 0.398 0.327 0.635 549

bpic15 tree-based 450 98 3 3 0.400 0.338 0.630 184

bpic15 tree-based 1671 99 27 2 0.384 0.376 0.620 1264

bpic15 tree-based 1670 98 25 2 0.383 0.424 0.596 1123

bpic15 tree-based 1255 100 11 3 0.378 0.476 0.569 680

bpic15 tree-based 1612 97 25 2 0.382 0.393 0.612 1140

bpic15 SA-based 794 37 35 2 0.421 0.426 0.577 804

bpic15 SA-based 114 33 2 2 0.457 0.234 0.635 436

bpic15 SA-based 845 49 30 2 0.387 0.356 0.628 1207

bpic15 SA-based 594 35 19 2 0.456 0.304 0.611 2009

bpic15 SA-based 1455 47 37 2 0.362 0.455 0.588 1692

bpic15 SA-based 555 33 22 2 0.459 0.316 0.604 3357

bpic15 SA-based 668 39 27 2 0.471 0.294 0.605 418

bpic15 SA-based 123 52 2 2 0.429 0.224 0.658 2812

bpic15 SA-based 524 37 13 2 0.472 0.285 0.608 6688

bpic15 SA-based 145 63 2 2 0.419 0.226 0.664 1687

bpic17 tree-based 3050 6 14 84 0.646 0.599 0.376 19638

bpic17 tree-based 3310 6 15 84 0.642 0.624 0.367 23462

bpic17 tree-based 362 2 24 8 0.700 0.567 0.354 4035

bpic17 tree-based 4115 6 13 84 0.638 0.631 0.366 26446

bpic17 tree-based 2242 2 16 84 0.619 0.627 0.377 6547

bpic17 tree-based 6316 8 17 84 0.585 0.664 0.371 15202

bpic17 tree-based 3439 6 11 84 0.642 0.619 0.369 6355

bpic17 tree-based 674 4 23 8 0.686 0.600 0.352 2441

bpic17 tree-based 3050 6 14 84 0.646 0.599 0.376 5885

bpic17 tree-based 3367 4 13 84 0.613 0.622 0.382 11980

bpic17 SA-based 2038 2 18 84 0.621 0.516 0.425 8903

Continued on next page



114

Table A.1: Continued from previous page

bpic17 SA-based 1916 3 14 84 0.632 0.507 0.422 8726

bpic17 SA-based 2669 2 20 84 0.615 0.578 0.403 11635

bpic17 SA-based 2061 2 23 84 0.617 0.583 0.399 8693

bpic17 SA-based 2134 2 18 84 0.624 0.562 0.405 4247

bpic17 SA-based 1733 2 19 84 0.621 0.571 0.402 4976

bpic17 SA-based 1852 2 15 84 0.625 0.537 0.414 3974

bpic17 SA-based 2458 2 21 84 0.617 0.574 0.403 9496

bpic17 SA-based 2438 3 18 84 0.622 0.547 0.412 14402

bpic17 SA-based 6607 22 8 84 0.701 0.669 0.314 85138

bpic18 tree-based 219 2 24 26 0.273 0.267 0.730 1451

bpic18 tree-based 371 7 24 27 0.256 0.264 0.740 1847

bpic18 tree-based 229 2 27 25 0.229 0.338 0.712 1511

bpic18 tree-based 108 3 25 8 0.277 0.217 0.752 1175

bpic18 tree-based 139 5 21 9 0.353 0.153 0.734 1388

bpic18 tree-based 344 4 16 49 0.266 0.262 0.736 1940

bpic18 tree-based 228 8 28 8 0.237 0.334 0.712 4531

bpic18 tree-based 113 5 29 4 0.360 0.116 0.742 4517

bpic18 tree-based 187 2 17 31 0.280 0.257 0.731 5287

bpic18 tree-based 70 2 28 4 0.287 0.207 0.751 4496

bpic18 SA-based 82 4 30 2 0.220 0.083 0.843 12681

bpic18 SA-based 101 5 31 2 0.218 0.150 0.815 14672

bpic18 SA-based 90 4 36 2 0.223 0.162 0.806 17418

bpic18 SA-based 62 4 17 2 0.229 0.045 0.853 12120

bpic18 SA-based 237 6 9 33 0.287 0.201 0.753 17156

bpic18 SA-based 75 3 38 2 0.222 0.192 0.793 22356

bpic18 SA-based 169 11 29 2 0.221 0.087 0.841 16683

bpic18 SA-based 128 6 30 2 0.222 0.102 0.834 33604

bpic18 SA-based 100 4 37 2 0.222 0.193 0.792 42392

bpic18 SA-based 311 6 8 52 0.275 0.218 0.752 26193

sepsis tree-based 30 2 10 2 0.171 0.204 0.812 37

sepsis tree-based 29 2 10 2 0.172 0.203 0.812 13

sepsis tree-based 46 2 12 2 0.170 0.292 0.764 56

sepsis tree-based 24 2 8 2 0.172 0.187 0.821 8

sepsis tree-based 30 2 10 2 0.171 0.195 0.817 48

sepsis tree-based 142 7 11 3 0.165 0.363 0.723 141

sepsis tree-based 360 23 11 2 0.157 0.552 0.585 429

sepsis tree-based 26 2 9 2 0.171 0.185 0.822 0

sepsis tree-based 27 2 9 2 0.172 0.195 0.817 69

sepsis tree-based 37 2 10 2 0.172 0.226 0.800 2

sepsis SA-based 15 2 8 1 0.286 0.080 0.804 5827

sepsis SA-based 18 2 10 1 0.172 0.063 0.879 1531

sepsis SA-based 7 1 7 1 0.173 0.003 0.904 3352

sepsis SA-based 18 2 10 1 0.172 0.085 0.869 1869

sepsis SA-based 15 2 8 1 0.172 0.067 0.877 912

sepsis SA-based 16 2 9 1 0.172 0.055 0.883 2231

sepsis SA-based 7 1 7 1 0.173 0.005 0.904 3602

sepsis SA-based 31 2 11 2 0.171 0.175 0.827 805

sepsis SA-based 14 2 8 1 0.172 0.009 0.902 1608

sepsis SA-based 33 2 12 2 0.171 0.206 0.811 3965

wabo tree-based 592 10 17 64 0.573 0.503 0.459 22

wabo tree-based 494 10 7 65 0.562 0.554 0.442 0

wabo tree-based 529 10 10 64 0.562 0.554 0.442 46

wabo tree-based 593 10 18 65 0.573 0.503 0.459 0

wabo tree-based 578 10 12 64 0.569 0.549 0.440 40

wabo tree-based 529 10 10 64 0.562 0.554 0.442 111

wabo tree-based 610 10 18 65 0.573 0.503 0.459 0

Continued on next page



115

Table A.1: Continued from previous page

wabo tree-based 560 10 10 65 0.569 0.549 0.440 1

wabo tree-based 512 10 9 64 0.562 0.554 0.442 118

wabo tree-based 592 10 16 65 0.573 0.503 0.459 48

wabo SA-based 594 6 14 65 0.578 0.511 0.453 152

wabo SA-based 552 3 20 65 0.572 0.549 0.439 183

wabo SA-based 320 10 5 65 0.601 0.414 0.475 0

wabo SA-based 648 3 24 65 0.566 0.567 0.433 75

wabo SA-based 334 10 6 65 0.600 0.414 0.475 4

wabo SA-based 378 10 12 65 0.595 0.417 0.477 0

wabo SA-based 332 10 7 65 0.600 0.414 0.476 25

wabo SA-based 345 10 7 65 0.600 0.414 0.475 62

wabo SA-based 742 5 24 65 0.555 0.576 0.434 723

wabo SA-based 368 10 9 65 0.600 0.414 0.476 95

The zero values of “CPU time (seconds)” in some rows indicate that those runs took less than one

second to finish. The exact time was not precisely recorded by the experiment computer.

Table A.2: Full results of the evaluation (Section 5.3.2) of all 60 organizational
models discovered from the experiment datasets by applying the combination of
ATonly/tree-based/SA-based, AHC/MOC, and FullRecall/OverallScore

Log Configuration

Model size Model quality

#execution #resource
f. p. F1

contexts groups

bpic15 ATonly AHC FR 495 10 1.000 0.023 0.044

bpic15 ATonly AHC OS 495 10 0.857 0.601 0.706

bpic15 ATonly MOC FR 495 9 1.000 0.015 0.030

bpic15 ATonly MOC OS 495 9 0.887 0.566 0.691

bpic15 tree-based AHC FR 571 10 1.000 0.265 0.419

bpic15 tree-based AHC OS 571 10 0.901 0.756 0.822

bpic15 tree-based MOC FR 571 10 1.000 0.032 0.063

bpic15 tree-based MOC OS 571 10 0.834 0.764 0.798

bpic15 SA-based AHC FR 145 10 1.000 0.259 0.411

bpic15 SA-based AHC OS 145 10 0.900 0.783 0.838

bpic15 SA-based MOC FR 145 10 1.000 0.065 0.122

bpic15 SA-based MOC OS 145 10 0.784 0.773 0.778

bpic17 ATonly AHC FR 24 10 1.000 0.092 0.168

bpic17 ATonly AHC OS 24 10 0.804 0.598 0.686

bpic17 ATonly MOC FR 24 9 1.000 0.055 0.105

bpic17 ATonly MOC OS 24 9 0.870 0.569 0.688

bpic17 tree-based AHC FR 3050 10 1.000 0.168 0.287

bpic17 tree-based AHC OS 3050 10 0.836 0.579 0.684

bpic17 tree-based MOC FR 3050 9 1.000 0.085 0.157

bpic17 tree-based MOC OS 3050 9 0.823 0.554 0.662

bpic17 SA-based AHC FR 2038 10 1.000 0.225 0.367

bpic17 SA-based AHC OS 2038 10 0.892 0.617 0.729

bpic17 SA-based MOC FR 2038 9 1.000 0.073 0.137

bpic17 SA-based MOC OS 2038 9 0.793 0.630 0.702

bpic18 ATonly AHC FR 18 10 1.000 0.183 0.309

bpic18 ATonly AHC OS 18 10 0.950 0.924 0.937

bpic18 ATonly MOC FR 18 8 1.000 0.009 0.019

bpic18 ATonly MOC OS 18 8 0.879 0.815 0.846

bpic18 tree-based AHC FR 108 9 1.000 0.263 0.416

bpic18 tree-based AHC OS 108 9 0.989 0.909 0.947

Continued on next page



116

Table A.2: Continued from previous page

bpic18 tree-based MOC FR 108 6 1.000 0.155 0.268

bpic18 tree-based MOC OS 108 6 0.936 0.908 0.922

bpic18 SA-based AHC FR 62 10 1.000 0.226 0.369

bpic18 SA-based AHC OS 62 10 0.978 0.938 0.957

bpic18 SA-based MOC FR 62 4 1.000 0.013 0.025

bpic18 SA-based MOC OS 62 4 0.764 0.820 0.791

sepsis ATonly AHC FR 15 10 1.000 0.926 0.962

sepsis ATonly AHC OS 15 10 0.999 0.928 0.963

sepsis ATonly MOC FR 15 10 1.000 0.903 0.949

sepsis ATonly MOC OS 15 10 0.979 0.942 0.961

sepsis tree-based AHC FR 26 10 1.000 0.928 0.962

sepsis tree-based AHC OS 26 10 0.994 0.951 0.972

sepsis tree-based MOC FR 26 10 1.000 0.104 0.188

sepsis tree-based MOC OS 26 10 0.977 0.929 0.952

sepsis SA-based AHC FR 7 10 1.000 0.926 0.962

sepsis SA-based AHC OS 7 10 0.999 0.928 0.963

sepsis SA-based MOC FR 7 10 1.000 0.914 0.955

sepsis SA-based MOC OS 7 10 0.979 0.943 0.961

wabo ATonly AHC FR 27 10 1.000 0.061 0.116

wabo ATonly AHC OS 27 10 0.929 0.533 0.677

wabo ATonly MOC FR 27 10 1.000 0.042 0.080

wabo ATonly MOC OS 27 10 0.930 0.424 0.583

wabo tree-based AHC FR 593 9 1.000 0.228 0.372

wabo tree-based AHC OS 593 9 0.831 0.649 0.729

wabo tree-based MOC FR 593 10 1.000 0.150 0.260

wabo tree-based MOC OS 593 10 0.754 0.611 0.675

wabo SA-based AHC FR 378 6 1.000 0.139 0.244

wabo SA-based AHC OS 378 6 0.908 0.581 0.709

wabo SA-based MOC FR 378 10 1.000 0.123 0.219

wabo SA-based MOC OS 378 10 0.771 0.579 0.661

Configuration: FR = FullRecall, OS = OverallScore

Model evaluation: f. = Fitness, p. = Precision, F1 = F1-score



117

Bibliography

[1] FIPA Specifications. http://www.fipa.org/specifications/index.html. Ac-

cessed: 2023-3-9. 21

[2] Gartner Research – Market Guide for Process Mining. https://

www.gartner.com/en/documents/3939836. Accessed: 2023-3-10. 13

[3] Organizational extension - IEEE Task Force on Process Mining.

https://www.tf-pm.org/resources/xes-standard/about-xes/standard-

extensions/org. Accessed: 2023-6-22. 14

[4] IEEE Standard for eXtensible Event Stream (XES) for Achieving Interoper-

ability in Event Logs and Event Streams. IEEE Std 1849-2016, pages 1–50,

Nov. 2016. 14, 17, 21, 58

[5] E. Aarts, J. Korst, and W. Michiels. Simulated Annealing. In E. K. Burke

and G. Kendall, editors, Search Methodologies: Introductory Tutorials in Op-

timization and Decision Support Techniques, pages 187–210. Springer US,

Boston, MA, 2005. 54

[6] M. Acheli, D. Grigori, and M. Weidlich. Discovering and Analyzing Contex-

tual Behavioral Patterns From Event Logs. IEEE Transactions on Knowledge

and Data Engineering, 34(12):5708–5721, Dec. 2022. 73

[7] A. Appice. Towards mining the organizational structure of a dynamic event

scenario. Journal of Intelligent Information Systems, 50(1):165–193, Feb.

2018. 3, 15, 17, 19, 21, 22, 108

[8] D. Arthur and S. Vassilvitskii. k-means++: the advantages of careful seeding.

In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA 2007, New Orleans, Louisiana, USA, January 7-9, 2007,

SODA ’07, pages 1027–1035, USA, Jan. 2007. Society for Industrial and Ap-

plied Mathematics. 74

[9] A. Banerjee, C. Krumpelman, J. Ghosh, S. Basu, and R. J. Mooney. Model-

based overlapping clustering. In Proceedings of the Eleventh ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, Chicago,

Illinois, USA, August 21-24, 2005, KDD ’05, pages 532–537, New York, NY,

USA, Aug. 2005. Association for Computing Machinery. 74, 78

http://www.fipa.org/specifications/index.html
https://www.gartner.com/en/documents/3939836
https://www.gartner.com/en/documents/3939836
https://www.tf-pm.org/resources/xes-standard/about-xes/standard-extensions/org
https://www.tf-pm.org/resources/xes-standard/about-xes/standard-extensions/org


118

[10] A. Baumgrass. Deriving Current State RBAC Models from Event Logs. In

Sixth International Conference on Availability, Reliability and Security, ARES

2011, Vienna, Austria, August 22-26, 2011, pages 667–672, Vienna, Aug.

2011. IEEE Computer Society. 16, 17, 19, 20, 21, 22

[11] A. Baumgrass, T. Baier, J. Mendling, and M. Strembeck. Conformance Check-

ing of RBAC Policies in Process-Aware Information Systems. In F. Daniel,

K. Barkaoui, and S. Dustdar, editors, Business Process Management Work-

shops - BPM 2011 International Workshops, Clermont-Ferrand, France, Au-

gust 29, 2011, Revised Selected Papers, Part II, pages 435–446, Berlin, Hei-

delberg, 2012. Springer. 19

[12] A. Bolt and W. M. P. van der Aalst. Multidimensional Process Mining Us-

ing Process Cubes. In K. Gaaloul, R. Schmidt, S. Nurcan, S. Guerreiro,

and Q. Ma, editors, Enterprise, Business-Process and Information Systems

Modeling - 16th International Conference, BPMDS 2015, 20th International

Conference, EMMSAD 2015, Held at CAiSE 2015, Stockholm, Sweden, June

8-9, 2015, pages 102–116. Springer International Publishing, 2015. 68

[13] B. Bortoluzzi, D. Carey, J. J. McArthur, and C. Menassa. Measurements of

workplace productivity in the office context: A systematic review and current

industry insights. Journal of Corporate Real Estate, 20(4):281–301, Jan. 2018.

89, 90

[14] R. P. J. C. Bose and W. M. P. van der Aalst. Context aware trace clustering:

Towards improving process mining results. In Proceedings of the SIAM In-

ternational Conference on Data Mining, SDM 2009, April 30 - May 2, 2009,

Sparks, Nevada, USA, pages 401–412, Philadelphia, PA, Apr. 2009. Society

for Industrial and Applied Mathematics. 73

[15] L. Bouzguenda and M. Abdelkafi. An agent-based approach for organizational

structures and interaction protocols mining in workflow. Social Network Anal-

ysis and Mining, 5(1):10, Mar. 2015. 18, 20, 21, 22

[16] S. Brignall and J. Ballantine. Performance measurement in service businesses

revisited. International Journal of Service Industry Management, 7(1):6–31,

Jan. 1996. 89, 90

[17] J. C. A. M. Buijs. Flexible evolutionary algorithms for mining structured

process models. PhD thesis, Eindhoven University of Technology, 2014. 57, 60

[18] J. C. A. M. Buijs. Receipt phase of an environmental permit application

process (WABO), CoSeLoG project, 2022. 56, 57, 60

[19] A. Burattin, A. Sperduti, and M. Veluscek. Business models enhancement

through discovery of roles. In IEEE Symposium on Computational Intelligence

and Data Mining, CIDM 2013, Singapore, 16-19 April, 2013, pages 103–110.

IEEE, Apr. 2013. 16, 20, 21, 22



119

[20] A. Charlwood, M. Stuart, and C. Trusson. Human capital metrics and analyt-

ics: assessing the evidence of the value and impact of people data. Technical

report, 2017. 89, 90, 91

[21] T. J. Coelli, D. S. Prasada Rao, C. J. O’Donnell, and G. E. Battese. An

Introduction to Efficiency and Productivity Analysis. Springer US, 2005. 89

[22] R. L. Daft, J. Murphy, and H. Willmott. Organization theory and design.

Cengage learning EMEA, 2010. 2, 18, 43, 112

[23] T. H. Davenport, J. Harris, and J. Shapiro. Competing on talent analytics.

Harvard Business Review, 88(10):52–58, Oct. 2010. 2

[24] T. H. Davenport and A. Spanyi. What Process Mining Is, andWhy Companies

Should Do It. Harvard Business Review, Apr. 2019. 3, 11, 12

[25] H. De Weerdt. Modelling Tang Emperor Taizong and Chinese Governance in

the Eighteenth-Century German-Speaking World. Global Intellectual History,

0(0):1–27, 2022. 2

[26] L. Delcoucq, F. Lecron, P. Fortemps, and W. M. P. van der Aalst. Resource-

centric process mining: clustering using local process models. In C.-C. Hung,

T. Cerny, D. Shin, and A. Bechini, editors, SAC ’20: The 35th ACM/SI-

GAPP Symposium on Applied Computing, online event, [Brno, Czech Repub-

lic], March 30 - April 3, 2020, SAC ’20, pages 45–52, New York, NY, USA,

Mar. 2020. Association for Computing Machinery. 17, 20, 21, 22

[27] M. Dumas, M. La Rosa, J. Mendling, and H. A. Reijers. Fundamentals of

Business Process Management. Springer, Apr. 2018. 2, 3, 12, 21, 25

[28] M. Dumas, W. M. P. van der Aalst, and A. H. M. ter Hofstede. Process-

Aware Information Systems: Bridging People and Software Through Process

Technology. Wiley, Sept. 2005. 11

[29] D. R. Ferreira and C. Alves. Discovering User Communities in Large Event

Logs. In F. Daniel, K. Barkaoui, and S. Dustdar, editors, Business Process

Management Workshops - BPM 2011 International Workshops, Clermont-

Ferrand, France, August 29, 2011, Revised Selected Papers, Part I, pages

123–134, Berlin, Heidelberg, 2012. Springer. 14, 15

[30] D. A. Garvin. How Google sold its engineers on management. Harvard Busi-

ness Review, 91(12):74–82, 2013. 2

[31] C. B. Gibson, M. E. Zellmer-Bruhn, and D. P. Schwab. Team Effectiveness

in Multinational Organizations: Evaluation Across Contexts. Group & Orga-

nization Management, 28(4):444–474, Dec. 2003. 89, 90

[32] J. Han, M. Kamber, and J. Pei. Data Mining: Concepts and Techniques.

Elsevier, June 2011. 33, 34, 35, 43, 46, 74, 75



120

[33] C. Hanachi, W. Gaaloul, and R. Mondi. Performative-Based Mining of Work-

flow Organizational Structures. In C. Huemer and P. Lops, editors, Proceed-

ings of the 13th International Conference on E-Commerce and Web Technolo-

gies (EC-Web 2012), pages 63–75, Berlin, Heidelberg, 2012. Springer. 18, 20,

21, 22

[34] J. G. Harris, E. Craig, and D. A. Light. Talent and analytics: new approaches,

higher ROI. Journal of Business Strategy, 32(6):4–13, Jan. 2011. 2

[35] B. P. Haynes. An evaluation of office productivity measurement. Journal of

Corporate Real Estate, 9(3):144–155, Jan. 2007. 89, 90

[36] D. Henderson, S. H. Jacobson, and A. W. Johnson. The Theory and Prac-

tice of Simulated Annealing. In F. Glover and G. A. Kochenberger, editors,

Handbook of Metaheuristics, pages 287–319. Springer US, Boston, MA, 2003.

54

[37] A. R. Hevner, S. T. March, J. Park, and S. Ram. Design Science in Informa-

tion Systems Research. MIS Quarterly: Management Information Systems,

28(1):75–105, 2004. 5

[38] Z. Huang, X. Lu, and H. Duan. Mining association rules to support resource

allocation in business process management. Expert Systems with Applications,

38(8):9483–9490, Aug. 2011. 15

[39] Z. Huang, X. Lu, and H. Duan. Resource behavior measure and application in

business process management. Expert Systems with Applications, 39(7):6458–

6468, June 2012. 15, 89

[40] T. Jin, J. Wang, and L. Wen. Organizational modeling from event logs.

In Y. Han, G. Alonso, R. Buyya, and C. Xu, editors, Sixth International

Conference on Grid and Cooperative Computing (GCC 2007), 16–18 August

2007, Urumchi, Xinjiang, China, pages 670–675. IEEE Computer Society,

Aug. 2007. 15, 16, 21, 22

[41] D. A. Keim, F. Mansmann, J. Schneidewind, J. Thomas, and H. Ziegler.

Visual Analytics: Scope and Challenges. In S. J. Simoff, M. H. Böhlen, and

A. Mazeika, editors, Visual Data Mining: Theory, Techniques and Tools for

Visual Analytics, volume 4404 LNCS, pages 76–90. Springer, 2008. 95

[42] S. Kirkpatrick, C. D. Gelatt, Jr, and M. P. Vecchi. Optimization by simulated

annealing. Science, 220(4598):671–680, May 1983. 51, 54

[43] R. Kohavi and C.-H. Li. Oblivious Decision Trees Graphs and Top down

Pruning. In Proceedings of the 14th International Joint Conference on Artifi-

cial Intelligence - Volume 2, IJCAI’95, pages 1071–1077, San Francisco, CA,

USA, Aug. 1995. Morgan Kaufmann Publishers Inc. 47



121

[44] A. Kumar and S. Liu. Analyzing a Helpdesk Process Through the Lens of Ac-

tor Handoff Patterns. In D. Fahland, C. Ghidini, J. Becker, and M. Dumas,

editors, Business Process Management Forum - BPM Forum 2020, Seville,

Spain, September 13-18, 2020, Proceedings, Lecture notes in business infor-

mation processing, pages 313–329, Cham, 2020. Springer International Pub-

lishing. 14

[45] A. Levenson. Using workforce analytics to improve strategy execution. Human

Resource Management, 57(3):685–700, May 2018. 2

[46] M. Li, L. Liu, L. Yin, and Y. Zhu. A process mining based approach to

knowledge maintenance. Information Systems Frontiers, 13(3):371–380, July

2011. 18, 20, 21, 22

[47] R. Liu, S. Agarwal, R. R. Sindhgatta, and J. Lee. Accelerating Collabo-

ration in Task Assignment Using a Socially Enhanced Resource Model. In

F. Daniel, J. Wang, and B. Weber, editors, Business Process Management:

11th International Conference, BPM 2013, Beijing, China, August 26-30,

2013. Proceedings, pages 251–258, Berlin, Heidelberg, 2013. Springer. 14

[48] T. Liu, Y. Cheng, and Z. Ni. Mining event logs to support workflow resource

allocation. Knowledge-Based Systems, 35:320–331, 2012. 15

[49] Y. Liu, J. Wang, Y. Yang, and J. Sun. A semi-automatic approach for work-

flow staff assignment. Computers in Industry, 59(5):463–476, 2008. 15

[50] S. Lloyd. Least squares quantization in PCM. IEEE Transactions on Infor-

mation Theory, 28(2):129–137, Mar. 1982. 74

[51] L. T. Ly, S. Rinderle, P. Dadam, and M. Reichert. Mining Staff Assignment

Rules from Event-Based Data. In C. J. Bussler and A. Haller, editors, Business

Process Management Workshops, BPM 2005 International Workshops, BPI,

BPD, ENEI, BPRM, WSCOBPM, BPS, Nancy, France, September 5, 2005,

Revised Selected Papers, pages 177–190, Berlin, Heidelberg, 2005. Springer.

15, 31

[52] F. Mannhardt. Sepsis Cases - Event Log, 2016. 56, 57, 59

[53] F. Mannhardt and D. Blinde. Analyzing the Trajectories of Patients with

Sepsis using Process Mining. In J. Gulden, S. Nurcan, I. Reinhartz-Berger,

W. Guédria, P. Bera, S. Guerreiro, M. Fellmann, and M. Weidlich, editors,

Joint Proceedings of the Radar tracks at the 18th International Working Con-

ference on Business Process Modeling, Development and Support (BPMDS),

and the 22nd International Working Conference on Evaluation and Model-

ing Methods for Systems Analysis and Development (EMMSAD), and the

8th International Workshop on Enterprise Modeling and Information Systems

Architectures (EMISA) co-located with the 29th International Conference on



122

Advanced Information Systems Engineering 2017 (CAiSE 2017), Essen, Ger-

many, June 12-13, 2017, volume 1859 of CEUR Workshop Proceedings, pages

72–80. CEUR-WS.org, 2017. 57, 59

[54] J. H. Marler and J. W. Boudreau. An evidence-based review of HR Analytics.

The International Journal of Human Resource Management, 28(1):3–26, Jan.

2017. 2

[55] J. Nakatumba and W. M. P. van der Aalst. Analyzing Resource Behavior

Using Process Mining. In S. Rinderle-Ma, S. Sadiq, and F. Leymann, ed-

itors, Business Process Management Workshops: BPM 2009 International

Workshops, Ulm, Germany, September 7, 2009. Revised Papers, pages 69–80.

Springer, Berlin, Heidelberg, 2010. 15

[56] Z. Ni, S. Wang, and H. Li. Mining organizational structure from workflow logs.

In Proceeding of the International Conference on e-Education, Entertainment

and e-Management (ICeEEM 2011), pages 222–225, Dec. 2011. 17, 21, 22

[57] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee. A design

science research methodology for information systems research. Journal of

Management Information Systems, 24(3):45–77, Dec. 2007. 5

[58] A. Pika, M. Leyer, M. T. Wynn, C. J. Fidge, A. H. M. ter Hofstede, and

W. M. P. van der Aalst. Mining Resource Profiles from Event Logs. ACM

Transactions on Management Information Systems, 8(1):1–30, Mar. 2017. 3,

15, 68, 89

[59] S. Rinderle-Ma and W. M. P. van der Aalst. Life-Cycle Support for Staff

Assignment Rules in Process-Aware Information Systems. Technical report,

Technische Universiteit Eindhoven, 2007. 15

[60] P. J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and valida-

tion of cluster analysis. Journal of Computational and Applied Mathematics,

20:53–65, Nov. 1987. 75

[61] N. Russell, W. M. P. van der Aalst, and A. H. M. ter Hofstede. Workflow

Patterns: The Definitive Guide. The MIT Press, 2016. 15

[62] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-Lite: A

Grammar of Interactive Graphics. IEEE Transactions on Visualization and

Computer Graphics, 23(1):341–350, Jan. 2017. 95

[63] S. Schönig, C. Cabanillas, S. Jablonski, and J. Mendling. A framework for ef-

ficiently mining the organisational perspective of business processes. Decision

Support Systems, 89:87–97, 2016. 3, 5, 14, 15

[64] R. Sellami, W. Gaaloul, and S. Moalla. An Ontology for Workflow Organi-

zational Model Mining. In S. Reddy and K. Drira, editors, 2012 IEEE 21st



123

International Workshop on Enabling Technologies: Infrastructure for Collab-

orative Enterprises, pages 199–204. IEEE, June 2012. 18, 20, 21, 22

[65] A. Shafagatova and A. Van Looy. Alignment patterns for process-oriented

appraisals and rewards: using HRM for BPM capability building. Business

Process Management Journal, 27(3):941–964, Jan. 2020. 109

[66] K. I. Smith, R. M. Everson, J. E. Fieldsend, C. Murphy, and R. Misra.

Dominance-Based Multiobjective Simulated Annealing. IEEE Transactions

on Evolutionary Computation, 12(3):323–342, June 2008. 51

[67] M. Song, C. W. Günther, and W. M. P. van der Aalst. Trace Clustering

in Process Mining. In D. Ardagna, M. Mecella, and J. Yang, editors, Busi-

ness Process Management Workshops, BPM 2008 International Workshops,

Milano, Italy, September 1-4, 2008. Revised Papers, pages 109–120, Berlin,

Heidelberg, 2009. Springer. 73

[68] M. Song and W. M. P. van der Aalst. Towards comprehensive support for

organizational mining. Decision Support Systems, 46(1):300–317, 2008. 3, 5,

15, 17, 19, 20, 21, 22, 28, 74, 78

[69] B. Suman and P. Kumar. A survey of simulated annealing as a tool for single

and multiobjective optimization. Journal of the Operational Research Society,

57(10):1143–1160, Oct. 2006. 51

[70] S. Suriadi, M. T. Wynn, C. Ouyang, A. H. M. ter Hofstede, and N. J. van

Dijk. Understanding Process Behaviours in a Large Insurance Company in

Australia: A Case Study. In C. Salinesi, M. C. Norrie, and O. Pastor, editors,

Advanced Information Systems Engineering - 25th International Conference,

CAiSE 2013, Valencia, Spain, June 17-21, 2013. Proceedings, Lecture Notes

in Computer Science, pages 449–464. Springer, 2013. 39, 89

[71] S. Suriadi, M. T. Wynn, J. Xu, W. M. P. van der Aalst, and A. H. M. ter

Hofstede. Discovering work prioritisation patterns from event logs. Decision

Support Systems, 100:77–92, Aug. 2017. 15

[72] P.-N. Tan, M. Steinbach, A. Karpatne, and V. Kumar. Introduction to Data

Mining. Pearson Education, Harlow, United Kingdom, July 2021. 80

[73] I. Tarique. Seven Trends in Corporate Training and Development: Strategies

to Align Goals with Employee Needs. Pearson Education, 2014. 9

[74] N. Tax, N. Sidorova, R. Haakma, and W. M. P. van der Aalst. Mining local

process models. Journal of Innovation in Digital Ecosystems, 3(2):183–196,

2016. 17, 73

[75] S. van den Heuvel and T. Bondarouk. The rise (and fall?) of HR analytics:

A study into the future application, value, structure, and system support.

Journal of Organizational Effectiveness, 4(2):157–178, June 2017. 94



124

[76] W. M. P. van der Aalst. Process Mining: Overview and Opportunities. ACM

Transactions on Management Information Systems, 3(2):1–17, July 2012. 3,

11

[77] W. M. P. van der Aalst. Process Cubes: Slicing, Dicing, Rolling Up and

Drilling Down Event Data for Process Mining. In M. Song, M. T. Wynn, and

J. Liu, editors, Asia Pacific Business Process Management - First Asia Pacific

Conference, AP-BPM 2013, Beijing, China, August 29-30, 2013. Selected

Papers, Lecture Notes in Business Information Processing, pages 1–22, Cham,

2013. Springer. 28, 68

[78] W. M. P. van der Aalst. Process Mining: Data Science in Action. Springer,

Apr. 2016. ix, 3, 11, 12, 13, 17, 21, 25, 26, 33, 82, 109, 111

[79] W. M. P. van der Aalst, H. A. Reijers, and M. Song. Discovering Social Net-

works from Event Logs. Computer Supported Cooperative Work, 14(6):549–

593, Dec. 2005. 14, 16, 74, 94

[80] W. M. P. van der Aalst and M. Song. Mining Social Networks: Uncover-

ing Interaction Patterns in Business Processes. In J. Desel, B. Pernici, and

M. Weske, editors, Business Process Management: Second International Con-

ference, BPM 2004, Potsdam, Germany, June 17-18, 2004. Proceedings, pages

244–260, Berlin, Heidelberg, 2004. Springer. 14

[81] B. F. van Dongen. BPI Challenge 2015, 2015. 56, 57, 58

[82] B. F. van Dongen. BPI Challenge 2017, 2017. 56, 57, 58

[83] B. F. van Dongen and F. Borchert. BPI Challenge 2018, 2018. 56, 57, 58, 59

[84] B. F. van Dongen and W. M. P. van der Aalst. A Meta Model for Process Min-

ing Data. In M. Missikoff and A. D. Nicola, editors, EMOI - INTEROP’05,

Enterprise Modelling and Ontologies for Interoperability, Proceedings of the

Open Interop Workshop on Enterprise Modelling and Ontologies for Interop-

erability, Co-located with CAiSE’05 Conference, Porto (Portugal), 13th-14th

June 2005, volume 160 of CEUR Workshop Proceedings. CEUR-WS.org, 2005.

21

[85] M. L. van Eck, X. Lu, S. J. J. Leemans, and W. M. P. van der Aalst. PM2:

A Process Mining Project Methodology. In J. Zdravkovic, M. Kirikova, and

P. Johannesson, editors, Advanced Information Systems Engineering - 27th

International Conference, CAiSE 2015, Stockholm, Sweden, June 8-12, 2015,

Proceedings, pages 297–313. Springer, 2015. ix, 6, 9, 39, 110

[86] G. van Hulzen, N. Martin, and B. Depaire. Looking Beyond Activity Labels:

Mining Context-Aware Resource Profiles Using Activity Instance Archetypes.

In A. Polyvyanyy, M. T. Wynn, A. Van Looy, and M. Reichert, editors, Busi-

ness Process Management Forum - BPM Forum 2021, Rome, Italy, September

06-10, 2021, Proceedings, pages 230–245. Springer, 2021. 17, 20, 22



125

[87] S. J. van Zelst, B. F. van Dongen, and W. M. P. van der Aalst. Online

Discovery of Cooperative Structures in Business Processes. In C. Debruyne,

H. Panetto, R. Meersman, T. Dillon, E. Kühn, D. O’Sullivan, and C. A.

Ardagna, editors, On the Move to Meaningful Internet Systems: OTM 2016

Conferences - Confederated International Conferences: CoopIS, C&TC, and

ODBASE 2016, Rhodes, Greece, October 24-28, 2016, Proceedings, Lecture

Notes in Computer Science, pages 210–228, Cham, 2016. Springer. 19

[88] J. H. Ward. Hierarchical Grouping to Optimize an Objective Function. Jour-

nal of the American Statistical Association, 58(301):236–244, Mar. 1963. 74,

78

[89] S. R. White. Concepts of scale in simulated annealing. In AIP Conference

Proceedings - The Physics of VLSI 1-3, August 1984, Palo Alto, CA, USA,

volume 122, pages 261–270. American Institute of Physics, Nov. 1984. 54

[90] J. Yang. Discovering Organizational Knowledge via Process Mining. In

J. Krogstie, C. Ouyang, and J. Ralyté, editors, Proceedings of the Doc-

toral Consortium Papers Presented at the 33rd International Conference on

Advanced Information Systems Engineering (CAiSE 2021), Melbourne, Aus-

tralia, June 28 - July 2, 2021, CEUR Workshop Proceedings, pages 41–48.

CEUR-WS.org, 2021. 23

[91] J. Yang, C. Ouyang, M. Pan, Y. Yu, and A. H. M. ter Hofstede. Finding

the “Liberos”: Discover Organizational Models with Overlaps. In M. Weske,

M. Montali, I. Weber, and J. vom Brocke, editors, Business Process Manage-

ment - 16th International Conference, BPM 2018, Sydney, NSW, Australia,

September 9-14, 2018, Proceedings, Lecture Notes in Computer Science, pages

339–355. Springer, 2018. 3, 14, 15, 17, 21, 22, 63, 74, 78

[92] J. Yang, C. Ouyang, A. H. M. ter Hofstede, and W. M. P. van der Aalst. No

Time to Dice: Learning Execution Contexts from Event Logs for Resource-

Oriented Process Mining. In C. Di Ciccio, R. M. Dijkman, A. del Ŕıo-Ortega,

and S. Rinderle-Ma, editors, Business Process Management - 20th Interna-

tional Conference, BPM 2022, Münster, Germany, September 11-16, 2022,

Proceedings., Lecture Notes in Computer Science, pages 163–180. Springer,

2022. 40

[93] J. Yang, C. Ouyang, A. H. M. ter Hofstede, W. M. P. van der Aalst, and

M. Leyer. Seeing the Forest for the Trees: Group-Oriented Workforce Ana-

lytics. In A. Polyvyanyy, M. T. Wynn, A. Van Looy, and M. Reichert, editors,

Business Process Management - 19th International Conference, BPM 2021,

Rome, Italy, September 06-10, 2021, Proceedings, Lecture Notes in Computer

Science, pages 345–362. Springer, 2021. 87



126

[94] J. Yang, C. Ouyang, W. M. P. van der Aalst, A. H. M. ter Hofstede, and

Y. Yu. OrdinoR: A framework for discovering, evaluating, and analyzing

organizational models using event logs. Decision Support Systems, 158:113771,

July 2022. 23, 71

[95] J. H. Ye, Z. W. Li, K. Yi, and A. Al-Ahmari. Mining Resource Community

and Resource Role Network from Event Logs. IEEE Access, 6:77685–77694,

2018. 15, 17, 21, 22, 108

[96] W. Zhao, Q. Lin, Y. Shi, and X. Fang. Mining the Role-Oriented Process

Models Based on Genetic Algorithm. In Y. Tan, Y. Shi, and Z. Ji, editors,

Advances in Swarm Intelligence - Third International Conference, ICSI 2012,

Shenzhen, China, June 17-20, 2012 Proceedings, Part I, Lecture Notes in

Computer Science, pages 398–405, Berlin, Heidelberg, 2012. Springer. 16, 18,

20, 21, 22

[97] W. Zhao and X. Zhao. Process Mining from the Organizational Perspective.

In Z. Wen and T. Li, editors, Foundations of Intelligent Systems: Proceedings

of the Eighth International Conference on Intelligent Systems and Knowledge

Engineering, Shenzhen, China, Nov 2013 (ISKE 2013), pages 701–708, Berlin,

Heidelberg, 2014. Springer. 5, 16


	Copyright
	thesis
	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Background
	Research Problem
	Solution Criteria
	Research Design
	Contributions
	Publications

	Literature Review
	Process Mining
	Resource-Oriented Process Mining
	Organizational Model Mining
	Research Gaps

	Conceptual Framework
	Preliminaries
	Execution Contexts
	Organizational Models
	Discovering Organizational Models
	Evaluating Organizational Models
	Analyzing Organizational Models
	Discussion

	Learning Execution Contexts
	Preliminaries
	Problem Modeling
	Problem Solution
	Evaluation
	Discussion

	Discovering Organizational Models
	Approach
	Implementation
	Evaluation
	Discussion

	Applying Organizational Models to Workforce Analytics
	Preliminaries
	Resource Group Work Profiles
	Case Study: One Process, Five Municipalities
	Discussion

	Epilogue
	Full Experiment Results
	Bibliography


